1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Data;
|
---|
24 |
|
---|
25 | namespace HeuristicLab.Analysis {
|
---|
26 | public static class MultidimensionalScaling {
|
---|
27 |
|
---|
28 | /// <summary>
|
---|
29 | /// Performs the Kruskal-Shepard algorithm and applies a gradient descent method
|
---|
30 | /// to fit the coordinates such that the difference between the fit distances
|
---|
31 | /// and the dissimilarities becomes minimal.
|
---|
32 | /// </summary>
|
---|
33 | /// <remarks>
|
---|
34 | /// It will initialize the coordinates in a deterministic fashion such that all initial points are equally spaced on a circle.
|
---|
35 | /// </remarks>
|
---|
36 | /// <param name="dissimilarities">A symmetric NxN matrix that specifies the dissimilarities between each element i and j. Diagonal elements are ignored.</param>
|
---|
37 | ///
|
---|
38 | /// <returns>A Nx2 matrix where the first column represents the x- and the second column the y coordinates.</returns>
|
---|
39 | public static DoubleMatrix KruskalShepard(DoubleMatrix dissimilarities) {
|
---|
40 | if (dissimilarities == null) throw new ArgumentNullException("dissimilarities");
|
---|
41 | if (dissimilarities.Rows != dissimilarities.Columns) throw new ArgumentException("Dissimilarities must be a square matrix.", "dissimilarities");
|
---|
42 |
|
---|
43 | int dimension = dissimilarities.Rows;
|
---|
44 | if (dimension == 1) return new DoubleMatrix(new double[,] { { 0, 0 } });
|
---|
45 | else if (dimension == 2) return new DoubleMatrix(new double[,] { { 0, 0 }, { 0, dissimilarities[0, 1] } });
|
---|
46 |
|
---|
47 | DoubleMatrix coordinates = new DoubleMatrix(dimension, 2);
|
---|
48 | double rad = (2 * Math.PI) / coordinates.Rows;
|
---|
49 | for (int i = 0; i < dimension; i++) {
|
---|
50 | coordinates[i, 0] = 10 * Math.Cos(rad * i);
|
---|
51 | coordinates[i, 1] = 10 * Math.Sin(rad * i);
|
---|
52 | }
|
---|
53 |
|
---|
54 | return KruskalShepard(dissimilarities, coordinates);
|
---|
55 | }
|
---|
56 |
|
---|
57 | /// <summary>
|
---|
58 | /// Performs the Kruskal-Shepard algorithm and applies a gradient descent method
|
---|
59 | /// to fit the coordinates such that the difference between the fit distances
|
---|
60 | /// and the dissimilarities is minimal.
|
---|
61 | /// </summary>
|
---|
62 | /// <remarks>
|
---|
63 | /// It will use a pre-initialized x,y-coordinates matrix as a starting point of the gradient descent.
|
---|
64 | /// </remarks>
|
---|
65 | /// <param name="dissimilarities">A symmetric NxN matrix that specifies the dissimilarities between each element i and j. Diagonal elements are ignored.</param>
|
---|
66 | /// <param name="coordinates">The Nx2 matrix of initial coordinates.</param>
|
---|
67 | /// <param name="maximumIterations">The number of iterations for which the algorithm should run.
|
---|
68 | /// In every iteration it tries to find the best location for every item.</param>
|
---|
69 | /// <returns>A Nx2 matrix where the first column represents the x- and the second column the y coordinates.</returns>
|
---|
70 | public static DoubleMatrix KruskalShepard(DoubleMatrix dissimilarities, DoubleMatrix coordinates, int maximumIterations = 20) {
|
---|
71 | int dimension = dissimilarities.Rows;
|
---|
72 | if (dimension != dissimilarities.Columns || coordinates.Rows != dimension) throw new ArgumentException("The number of coordinates and the number of rows and columns in the dissimilarities matrix do not match.");
|
---|
73 |
|
---|
74 | double epsg = 1e-7;
|
---|
75 | double epsf = 0;
|
---|
76 | double epsx = 0;
|
---|
77 | int maxits = 100;
|
---|
78 | alglib.mincgstate state = null;
|
---|
79 | alglib.mincgreport rep;
|
---|
80 |
|
---|
81 | for (int iterations = 0; iterations < maximumIterations; iterations++) {
|
---|
82 | bool changed = false;
|
---|
83 | for (int i = 0; i < dimension; i++) {
|
---|
84 | double[] c = new double[] { coordinates[i, 0], coordinates[i, 1] };
|
---|
85 |
|
---|
86 | try {
|
---|
87 | if ((iterations == 0 && i == 0)) {
|
---|
88 | alglib.mincgcreate(c, out state);
|
---|
89 | alglib.mincgsetcond(state, epsg, epsf, epsx, maxits);
|
---|
90 | } else {
|
---|
91 | alglib.mincgrestartfrom(state, c);
|
---|
92 | }
|
---|
93 | alglib.mincgoptimize(state, StressGradient, null, new Info(coordinates, dissimilarities, i));
|
---|
94 | alglib.mincgresults(state, out c, out rep);
|
---|
95 | } catch (alglib.alglibexception) { }
|
---|
96 | if (!double.IsNaN(c[0]) && !double.IsNaN(c[1])) {
|
---|
97 | changed = changed || (coordinates[i, 0] != c[0]) || (coordinates[i, 1] != c[1]);
|
---|
98 | coordinates[i, 0] = c[0];
|
---|
99 | coordinates[i, 1] = c[1];
|
---|
100 | }
|
---|
101 | }
|
---|
102 | if (!changed) break;
|
---|
103 | }
|
---|
104 | return coordinates;
|
---|
105 | }
|
---|
106 |
|
---|
107 | // computes the function and the gradient of the raw stress function.
|
---|
108 | private static void StressGradient(double[] x, ref double func, double[] grad, object obj) {
|
---|
109 | func = 0; grad[0] = 0; grad[1] = 0;
|
---|
110 | Info info = (obj as Info);
|
---|
111 | for (int i = 0; i < info.Coordinates.Rows; i++) {
|
---|
112 | double c = info.Dissimilarities[info.Row, i];
|
---|
113 | if (i != info.Row) {
|
---|
114 | double a = info.Coordinates[i, 0];
|
---|
115 | double b = info.Coordinates[i, 1];
|
---|
116 | func += Stress(x, c, a, b);
|
---|
117 | grad[0] += ((2 * x[0] - 2 * a) * Math.Sqrt(x[1] * x[1] - 2 * b * x[1] + x[0] * x[0] - 2 * a * x[0] + b * b + a * a) - 2 * c * x[0] + 2 * a * c) / Math.Sqrt(x[1] * x[1] - 2 * b * x[1] + x[0] * x[0] - 2 * a * x[0] + b * b + a * a);
|
---|
118 | grad[1] += ((2 * x[1] - 2 * b) * Math.Sqrt(x[1] * x[1] - 2 * b * x[1] + x[0] * x[0] - 2 * a * x[0] + b * b + a * a) - 2 * c * x[1] + 2 * b * c) / Math.Sqrt(x[1] * x[1] - 2 * b * x[1] + x[0] * x[0] - 2 * a * x[0] + b * b + a * a);
|
---|
119 | }
|
---|
120 | }
|
---|
121 | }
|
---|
122 |
|
---|
123 | private static double Stress(double[] x, double distance, double xCoord, double yCoord) {
|
---|
124 | return Stress(x[0], x[1], distance, xCoord, yCoord);
|
---|
125 | }
|
---|
126 |
|
---|
127 | private static double Stress(double x, double y, double distance, double otherX, double otherY) {
|
---|
128 | double d = Math.Sqrt((x - otherX) * (x - otherX)
|
---|
129 | + (y - otherY) * (y - otherY));
|
---|
130 | return (d - distance) * (d - distance);
|
---|
131 | }
|
---|
132 |
|
---|
133 | /// <summary>
|
---|
134 | /// This method computes the normalized raw-stress value according to Groenen and van de Velden 2004. "Multidimensional Scaling". Technical report EI 2004-15.
|
---|
135 | /// </summary>
|
---|
136 | /// <remarks>
|
---|
137 | /// Throws an ArgumentException when the <paramref name="dissimilarities"/> matrix is not symmetric.
|
---|
138 | /// </remarks>
|
---|
139 | ///
|
---|
140 | /// <param name="dissimilarities">The matrix with the dissimilarities.</param>
|
---|
141 | /// <param name="coordinates">The actual location of the points.</param>
|
---|
142 | /// <returns>The normalized raw-stress value that describes the goodness-of-fit between the distances in the points and the size of the dissimilarities. If the value is < 0.1 the fit is generally considered good. If between 0.1 and 0.2 it is considered acceptable, but the usefulness of the scaling with higher values is doubtful.</returns>
|
---|
143 | public static double CalculateNormalizedStress(DoubleMatrix dissimilarities, DoubleMatrix coordinates) {
|
---|
144 | int dimension = dissimilarities.Rows;
|
---|
145 | if (dimension != dissimilarities.Columns || dimension != coordinates.Rows) throw new ArgumentException("The number of coordinates and the number of rows and columns in the dissimilarities matrix do not match.");
|
---|
146 | double stress = 0, normalization = 0;
|
---|
147 | for (int i = 0; i < dimension - 1; i++) {
|
---|
148 | for (int j = i + 1; j < dimension; j++) {
|
---|
149 | if (dissimilarities[i, j] != dissimilarities[j, i]) throw new ArgumentException("Dissimilarities is not a symmetric matrix.", "dissimilarities");
|
---|
150 | if (dissimilarities[i, j] != 0) {
|
---|
151 | stress += Stress(coordinates[i, 0], coordinates[i, 1], dissimilarities[i, j], coordinates[j, 0], coordinates[j, 1]);
|
---|
152 | normalization += (dissimilarities[i, j] * dissimilarities[i, j]);
|
---|
153 | }
|
---|
154 | }
|
---|
155 | }
|
---|
156 | return stress / normalization;
|
---|
157 | }
|
---|
158 |
|
---|
159 | private class Info {
|
---|
160 | public DoubleMatrix Coordinates { get; set; }
|
---|
161 | public DoubleMatrix Dissimilarities { get; set; }
|
---|
162 | public int Row { get; set; }
|
---|
163 |
|
---|
164 | public Info(DoubleMatrix c, DoubleMatrix d, int r) {
|
---|
165 | Coordinates = c;
|
---|
166 | Dissimilarities = d;
|
---|
167 | Row = r;
|
---|
168 | }
|
---|
169 | }
|
---|
170 | }
|
---|
171 | } |
---|