1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Drawing;
|
---|
25 | using System.Linq;
|
---|
26 | using HeuristicLab.Collections;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Core;
|
---|
29 | using HeuristicLab.Data;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
34 | using HeuristicLab.Parameters;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
37 | [Item("Regression Workbench", "Experiment containing multiple algorithms for regression analysis.")]
|
---|
38 | [Creatable("Data Analysis")]
|
---|
39 | [StorableClass]
|
---|
40 | public sealed class RegressionWorkbench : ParameterizedNamedItem, IOptimizer, IStorableContent {
|
---|
41 | public string Filename { get; set; }
|
---|
42 |
|
---|
43 | private const string ProblemDataParameterName = "ProblemData";
|
---|
44 |
|
---|
45 | #region parameter properties
|
---|
46 | public IValueParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
47 | get { return (IValueParameter<IRegressionProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
48 | }
|
---|
49 | #endregion
|
---|
50 | #region properties
|
---|
51 | public IRegressionProblemData ProblemData {
|
---|
52 | get { return ProblemDataParameter.Value; }
|
---|
53 | set { ProblemDataParameter.Value = value; }
|
---|
54 | }
|
---|
55 | #endregion
|
---|
56 | [Storable]
|
---|
57 | private Experiment experiment;
|
---|
58 |
|
---|
59 | [StorableConstructor]
|
---|
60 | private RegressionWorkbench(bool deserializing)
|
---|
61 | : base(deserializing) {
|
---|
62 | }
|
---|
63 | private RegressionWorkbench(RegressionWorkbench original, Cloner cloner)
|
---|
64 | : base(original, cloner) {
|
---|
65 | experiment = cloner.Clone(original.experiment);
|
---|
66 | RegisterEventHandlers();
|
---|
67 | }
|
---|
68 | public RegressionWorkbench()
|
---|
69 | : base() {
|
---|
70 | name = ItemName;
|
---|
71 | description = ItemDescription;
|
---|
72 |
|
---|
73 | Parameters.Add(new ValueParameter<IRegressionProblemData>(ProblemDataParameterName, "The regression problem data that should be used for modeling.", new RegressionProblemData()));
|
---|
74 |
|
---|
75 | experiment = new Experiment();
|
---|
76 |
|
---|
77 | //var svmExperiments = CreateSvmExperiment();
|
---|
78 | var rfExperiments = CreateRandomForestExperiments();
|
---|
79 |
|
---|
80 | experiment.Optimizers.Add(new LinearRegression());
|
---|
81 | experiment.Optimizers.Add(rfExperiments);
|
---|
82 | //experiment.Optimizers.Add(svmExperiments);
|
---|
83 |
|
---|
84 | RegisterEventHandlers();
|
---|
85 | }
|
---|
86 |
|
---|
87 | [StorableHook(HookType.AfterDeserialization)]
|
---|
88 | private void AfterDeserialization() {
|
---|
89 | RegisterEventHandlers();
|
---|
90 | }
|
---|
91 |
|
---|
92 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
93 | return new RegressionWorkbench(this, cloner);
|
---|
94 | }
|
---|
95 |
|
---|
96 | private void RegisterEventHandlers() {
|
---|
97 | ProblemDataParameter.ValueChanged += ProblemDataParameterValueChanged;
|
---|
98 |
|
---|
99 | experiment.ExceptionOccurred += (sender, e) => OnExceptionOccured(e);
|
---|
100 | experiment.ExecutionStateChanged += (sender, e) => OnExecutionStateChanged(e);
|
---|
101 | experiment.ExecutionTimeChanged += (sender, e) => OnExecutionTimeChanged(e);
|
---|
102 | experiment.Paused += (sender, e) => OnPaused(e);
|
---|
103 | experiment.Prepared += (sender, e) => OnPrepared(e);
|
---|
104 | experiment.Started += (sender, e) => OnStarted(e);
|
---|
105 | experiment.Stopped += (sender, e) => OnStopped(e);
|
---|
106 | }
|
---|
107 |
|
---|
108 | private IOptimizer CreateRandomForestExperiments() {
|
---|
109 | var exp = new Experiment();
|
---|
110 | double[] rs = new double[] { 0.2, 0.3, 0.4, 0.5, 0.6, 0.65 };
|
---|
111 | foreach (var r in rs) {
|
---|
112 | var cv = new CrossValidation();
|
---|
113 | var rf = new RandomForestRegression();
|
---|
114 | rf.R = r;
|
---|
115 | cv.Algorithm = rf;
|
---|
116 | cv.Folds.Value = 5;
|
---|
117 | exp.Optimizers.Add(cv);
|
---|
118 | }
|
---|
119 | return exp;
|
---|
120 | }
|
---|
121 |
|
---|
122 | private IOptimizer CreateSvmExperiment() {
|
---|
123 | var exp = new Experiment();
|
---|
124 | var costs = new double[] { Math.Pow(2, -5), Math.Pow(2, -3), Math.Pow(2, -1), Math.Pow(2, 1), Math.Pow(2, 3), Math.Pow(2, 5), Math.Pow(2, 7), Math.Pow(2, 9), Math.Pow(2, 11), Math.Pow(2, 13), Math.Pow(2, 15) };
|
---|
125 | var gammas = new double[] { Math.Pow(2, -15), Math.Pow(2, -13), Math.Pow(2, -11), Math.Pow(2, -9), Math.Pow(2, -7), Math.Pow(2, -5), Math.Pow(2, -3), Math.Pow(2, -1), Math.Pow(2, 1), Math.Pow(2, 3) };
|
---|
126 | var nus = new double[] { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 };
|
---|
127 | foreach (var gamma in gammas)
|
---|
128 | foreach (var cost in costs)
|
---|
129 | foreach (var nu in nus) {
|
---|
130 | var cv = new CrossValidation();
|
---|
131 | var svr = new SupportVectorRegression();
|
---|
132 | svr.Nu.Value = nu;
|
---|
133 | svr.Cost.Value = cost;
|
---|
134 | svr.Gamma.Value = gamma;
|
---|
135 | cv.Algorithm = svr;
|
---|
136 | cv.Folds.Value = 5;
|
---|
137 | exp.Optimizers.Add(cv);
|
---|
138 | }
|
---|
139 | return exp;
|
---|
140 | }
|
---|
141 |
|
---|
142 | public RunCollection Runs {
|
---|
143 | get { return experiment.Runs; }
|
---|
144 | }
|
---|
145 |
|
---|
146 | public void Prepare(bool clearRuns) {
|
---|
147 | experiment.Prepare(clearRuns);
|
---|
148 | }
|
---|
149 |
|
---|
150 | public IEnumerable<IOptimizer> NestedOptimizers {
|
---|
151 | get { return experiment.NestedOptimizers; }
|
---|
152 | }
|
---|
153 |
|
---|
154 | public ExecutionState ExecutionState {
|
---|
155 | get { return experiment.ExecutionState; }
|
---|
156 | }
|
---|
157 |
|
---|
158 | public TimeSpan ExecutionTime {
|
---|
159 | get { return experiment.ExecutionTime; }
|
---|
160 | }
|
---|
161 |
|
---|
162 | public void Prepare() {
|
---|
163 | experiment.Prepare();
|
---|
164 | }
|
---|
165 |
|
---|
166 | public void Start() {
|
---|
167 | experiment.Start();
|
---|
168 | }
|
---|
169 |
|
---|
170 | public void Pause() {
|
---|
171 | experiment.Pause();
|
---|
172 | }
|
---|
173 |
|
---|
174 | public void Stop() {
|
---|
175 | experiment.Stop();
|
---|
176 | }
|
---|
177 |
|
---|
178 | public event EventHandler ExecutionStateChanged;
|
---|
179 | private void OnExecutionStateChanged(EventArgs e) {
|
---|
180 | var handler = ExecutionStateChanged;
|
---|
181 | if (handler != null) handler(this, e);
|
---|
182 | }
|
---|
183 |
|
---|
184 | public event EventHandler ExecutionTimeChanged;
|
---|
185 | private void OnExecutionTimeChanged(EventArgs e) {
|
---|
186 | var handler = ExecutionTimeChanged;
|
---|
187 | if (handler != null) handler(this, e);
|
---|
188 | }
|
---|
189 |
|
---|
190 | public event EventHandler Prepared;
|
---|
191 | private void OnPrepared(EventArgs e) {
|
---|
192 | var handler = Prepared;
|
---|
193 | if (handler != null) handler(this, e);
|
---|
194 | }
|
---|
195 |
|
---|
196 | public event EventHandler Started;
|
---|
197 | private void OnStarted(EventArgs e) {
|
---|
198 | var handler = Started;
|
---|
199 | if (handler != null) handler(this, e);
|
---|
200 | }
|
---|
201 |
|
---|
202 | public event EventHandler Paused;
|
---|
203 | private void OnPaused(EventArgs e) {
|
---|
204 | var handler = Paused;
|
---|
205 | if (handler != null) handler(this, e);
|
---|
206 | }
|
---|
207 |
|
---|
208 | public event EventHandler Stopped;
|
---|
209 | private void OnStopped(EventArgs e) {
|
---|
210 | var handler = Stopped;
|
---|
211 | if (handler != null) handler(this, e);
|
---|
212 | }
|
---|
213 |
|
---|
214 | public event EventHandler<EventArgs<Exception>> ExceptionOccurred;
|
---|
215 | private void OnExceptionOccured(EventArgs<Exception> e) {
|
---|
216 | var handler = ExceptionOccurred;
|
---|
217 | if (handler != null) handler(this, e);
|
---|
218 | }
|
---|
219 |
|
---|
220 | public void ProblemDataParameterValueChanged(object source, EventArgs e) {
|
---|
221 | foreach (var op in NestedOptimizers.OfType<IDataAnalysisAlgorithm<IRegressionProblem>>()) {
|
---|
222 | op.Problem.ProblemDataParameter.Value = ProblemData;
|
---|
223 | }
|
---|
224 | }
|
---|
225 | }
|
---|
226 | }
|
---|