1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
31 | /// <summary>
|
---|
32 | /// Represents a nearest neighbour model for regression and classification
|
---|
33 | /// </summary>
|
---|
34 | [StorableClass]
|
---|
35 | [Item("NearestNeighbourModel", "Represents a neural network for regression and classification.")]
|
---|
36 | public sealed class NearestNeighbourModel : NamedItem, INearestNeighbourModel {
|
---|
37 |
|
---|
38 | private alglib.nearestneighbor.kdtree kdTree;
|
---|
39 | public alglib.nearestneighbor.kdtree KDTree {
|
---|
40 | get { return kdTree; }
|
---|
41 | set {
|
---|
42 | if (value != kdTree) {
|
---|
43 | if (value == null) throw new ArgumentNullException();
|
---|
44 | kdTree = value;
|
---|
45 | OnChanged(EventArgs.Empty);
|
---|
46 | }
|
---|
47 | }
|
---|
48 | }
|
---|
49 |
|
---|
50 | [Storable]
|
---|
51 | private string targetVariable;
|
---|
52 | [Storable]
|
---|
53 | private string[] allowedInputVariables;
|
---|
54 | [Storable]
|
---|
55 | private double[] classValues;
|
---|
56 | [Storable]
|
---|
57 | private int k;
|
---|
58 | [StorableConstructor]
|
---|
59 | private NearestNeighbourModel(bool deserializing)
|
---|
60 | : base(deserializing) {
|
---|
61 | if (deserializing)
|
---|
62 | kdTree = new alglib.nearestneighbor.kdtree();
|
---|
63 | }
|
---|
64 | private NearestNeighbourModel(NearestNeighbourModel original, Cloner cloner)
|
---|
65 | : base(original, cloner) {
|
---|
66 | kdTree = new alglib.nearestneighbor.kdtree();
|
---|
67 | kdTree.approxf = original.kdTree.approxf;
|
---|
68 | kdTree.boxmax = (double[])original.kdTree.boxmax.Clone();
|
---|
69 | kdTree.boxmin = (double[])original.kdTree.boxmin.Clone();
|
---|
70 | kdTree.buf = (double[])original.kdTree.buf.Clone();
|
---|
71 | kdTree.curboxmax = (double[])original.kdTree.curboxmax.Clone();
|
---|
72 | kdTree.curboxmin = (double[])original.kdTree.curboxmin.Clone();
|
---|
73 | kdTree.curdist = original.kdTree.curdist;
|
---|
74 | kdTree.debugcounter = original.kdTree.debugcounter;
|
---|
75 | kdTree.distmatrixtype = original.kdTree.distmatrixtype;
|
---|
76 | kdTree.idx = (int[])original.kdTree.idx.Clone();
|
---|
77 | kdTree.kcur = original.kdTree.kcur;
|
---|
78 | kdTree.kneeded = original.kdTree.kneeded;
|
---|
79 | kdTree.n = original.kdTree.n;
|
---|
80 | kdTree.nodes = (int[])original.kdTree.nodes.Clone();
|
---|
81 | kdTree.normtype = original.kdTree.normtype;
|
---|
82 | kdTree.nx = original.kdTree.nx;
|
---|
83 | kdTree.ny = original.kdTree.ny;
|
---|
84 | kdTree.r = (double[])original.kdTree.r.Clone();
|
---|
85 | kdTree.rneeded = original.kdTree.rneeded;
|
---|
86 | kdTree.selfmatch = original.kdTree.selfmatch;
|
---|
87 | kdTree.splits = (double[])original.kdTree.splits.Clone();
|
---|
88 | kdTree.tags = (int[])original.kdTree.tags.Clone();
|
---|
89 | kdTree.x = (double[])original.kdTree.x.Clone();
|
---|
90 | kdTree.xy = (double[,])original.kdTree.xy.Clone();
|
---|
91 |
|
---|
92 | k = original.k;
|
---|
93 | targetVariable = original.targetVariable;
|
---|
94 | allowedInputVariables = (string[])original.allowedInputVariables.Clone();
|
---|
95 | if (original.classValues != null)
|
---|
96 | this.classValues = (double[])original.classValues.Clone();
|
---|
97 | }
|
---|
98 | public NearestNeighbourModel(alglib.nearestneighbor.kdtree kdTree, int k, string targetVariable, IEnumerable<string> allowedInputVariables, double[] classValues = null)
|
---|
99 | : base() {
|
---|
100 | this.name = ItemName;
|
---|
101 | this.description = ItemDescription;
|
---|
102 | this.kdTree = kdTree;
|
---|
103 | this.k = k;
|
---|
104 | this.targetVariable = targetVariable;
|
---|
105 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
106 | if (classValues != null)
|
---|
107 | this.classValues = (double[])classValues.Clone();
|
---|
108 | }
|
---|
109 |
|
---|
110 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
111 | return new NearestNeighbourModel(this, cloner);
|
---|
112 | }
|
---|
113 |
|
---|
114 | public IEnumerable<double> GetEstimatedValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
115 | double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
|
---|
116 |
|
---|
117 | int n = inputData.GetLength(0);
|
---|
118 | int columns = inputData.GetLength(1);
|
---|
119 | double[] x = new double[columns];
|
---|
120 | double[] y = new double[1];
|
---|
121 | double[] dists = new double[k];
|
---|
122 | double[,] neighbours = new double[k, columns + 1];
|
---|
123 |
|
---|
124 | for (int row = 0; row < n; row++) {
|
---|
125 | for (int column = 0; column < columns; column++) {
|
---|
126 | x[column] = inputData[row, column];
|
---|
127 | }
|
---|
128 | int actNeighbours = alglib.nearestneighbor.kdtreequeryknn(kdTree, x, k, false);
|
---|
129 | alglib.nearestneighbor.kdtreequeryresultsdistances(kdTree, ref dists);
|
---|
130 | alglib.nearestneighbor.kdtreequeryresultsxy(kdTree, ref neighbours);
|
---|
131 |
|
---|
132 | double distanceWeightedValue = 0.0;
|
---|
133 | double distsSum = 0.0;
|
---|
134 | for (int i = 0; i < actNeighbours; i++) {
|
---|
135 | distanceWeightedValue += neighbours[i, columns] / dists[i];
|
---|
136 | distsSum += 1.0 / dists[i];
|
---|
137 | }
|
---|
138 | yield return distanceWeightedValue / distsSum;
|
---|
139 | }
|
---|
140 | }
|
---|
141 |
|
---|
142 | public IEnumerable<double> GetEstimatedClassValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
143 | double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
|
---|
144 |
|
---|
145 | int n = inputData.GetLength(0);
|
---|
146 | int columns = inputData.GetLength(1);
|
---|
147 | double[] x = new double[columns];
|
---|
148 | int[] y = new int[classValues.Length];
|
---|
149 | double[] dists = new double[k];
|
---|
150 | double[,] neighbours = new double[k, columns + 1];
|
---|
151 |
|
---|
152 | for (int row = 0; row < n; row++) {
|
---|
153 | for (int column = 0; column < columns; column++) {
|
---|
154 | x[column] = inputData[row, column];
|
---|
155 | }
|
---|
156 | int actNeighbours = alglib.nearestneighbor.kdtreequeryknn(kdTree, x, k, false);
|
---|
157 | alglib.nearestneighbor.kdtreequeryresultsdistances(kdTree, ref dists);
|
---|
158 | alglib.nearestneighbor.kdtreequeryresultsxy(kdTree, ref neighbours);
|
---|
159 |
|
---|
160 | Array.Clear(y, 0, y.Length);
|
---|
161 | for (int i = 0; i < actNeighbours; i++) {
|
---|
162 | int classValue = (int)Math.Round(neighbours[i, columns]);
|
---|
163 | y[classValue]++;
|
---|
164 | }
|
---|
165 |
|
---|
166 | // find class for with the largest probability value
|
---|
167 | int maxProbClassIndex = 0;
|
---|
168 | double maxProb = y[0];
|
---|
169 | for (int i = 1; i < y.Length; i++) {
|
---|
170 | if (maxProb < y[i]) {
|
---|
171 | maxProb = y[i];
|
---|
172 | maxProbClassIndex = i;
|
---|
173 | }
|
---|
174 | }
|
---|
175 | yield return classValues[maxProbClassIndex];
|
---|
176 | }
|
---|
177 | }
|
---|
178 |
|
---|
179 | public INearestNeighbourRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
180 | return new NearestNeighbourRegressionSolution(problemData, this);
|
---|
181 | }
|
---|
182 | IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
183 | return CreateRegressionSolution(problemData);
|
---|
184 | }
|
---|
185 | public INearestNeighbourClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
186 | return new NearestNeighbourClassificationSolution(problemData, this);
|
---|
187 | }
|
---|
188 | IClassificationSolution IClassificationModel.CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
189 | return CreateClassificationSolution(problemData);
|
---|
190 | }
|
---|
191 |
|
---|
192 | #region events
|
---|
193 | public event EventHandler Changed;
|
---|
194 | private void OnChanged(EventArgs e) {
|
---|
195 | var handlers = Changed;
|
---|
196 | if (handlers != null)
|
---|
197 | handlers(this, e);
|
---|
198 | }
|
---|
199 | #endregion
|
---|
200 |
|
---|
201 | #region persistence
|
---|
202 | [Storable]
|
---|
203 | public double KDTreeApproxF {
|
---|
204 | get { return kdTree.approxf; }
|
---|
205 | set { kdTree.approxf = value; }
|
---|
206 | }
|
---|
207 | [Storable]
|
---|
208 | public double[] KDTreeBoxMax {
|
---|
209 | get { return kdTree.boxmax; }
|
---|
210 | set { kdTree.boxmax = value; }
|
---|
211 | }
|
---|
212 | [Storable]
|
---|
213 | public double[] KDTreeBoxMin {
|
---|
214 | get { return kdTree.boxmin; }
|
---|
215 | set { kdTree.boxmin = value; }
|
---|
216 | }
|
---|
217 | [Storable]
|
---|
218 | public double[] KDTreeBuf {
|
---|
219 | get { return kdTree.buf; }
|
---|
220 | set { kdTree.buf = value; }
|
---|
221 | }
|
---|
222 | [Storable]
|
---|
223 | public double[] KDTreeCurBoxMax {
|
---|
224 | get { return kdTree.curboxmax; }
|
---|
225 | set { kdTree.curboxmax = value; }
|
---|
226 | }
|
---|
227 | [Storable]
|
---|
228 | public double[] KDTreeCurBoxMin {
|
---|
229 | get { return kdTree.curboxmin; }
|
---|
230 | set { kdTree.curboxmin = value; }
|
---|
231 | }
|
---|
232 | [Storable]
|
---|
233 | public double KDTreeCurDist {
|
---|
234 | get { return kdTree.curdist; }
|
---|
235 | set { kdTree.curdist = value; }
|
---|
236 | }
|
---|
237 | [Storable]
|
---|
238 | public int KDTreeDebugCounter {
|
---|
239 | get { return kdTree.debugcounter; }
|
---|
240 | set { kdTree.debugcounter = value; }
|
---|
241 | }
|
---|
242 | [Storable]
|
---|
243 | public int KDTreeDistMatrixType {
|
---|
244 | get { return kdTree.distmatrixtype; }
|
---|
245 | set { kdTree.distmatrixtype = value; }
|
---|
246 | }
|
---|
247 | [Storable]
|
---|
248 | public int[] KDTreeIdx {
|
---|
249 | get { return kdTree.idx; }
|
---|
250 | set { kdTree.idx = value; }
|
---|
251 | }
|
---|
252 | [Storable]
|
---|
253 | public int KDTreeKCur {
|
---|
254 | get { return kdTree.kcur; }
|
---|
255 | set { kdTree.kcur = value; }
|
---|
256 | }
|
---|
257 | [Storable]
|
---|
258 | public int KDTreeKNeeded {
|
---|
259 | get { return kdTree.kneeded; }
|
---|
260 | set { kdTree.kneeded = value; }
|
---|
261 | }
|
---|
262 | [Storable]
|
---|
263 | public int KDTreeN {
|
---|
264 | get { return kdTree.n; }
|
---|
265 | set { kdTree.n = value; }
|
---|
266 | }
|
---|
267 | [Storable]
|
---|
268 | public int[] KDTreeNodes {
|
---|
269 | get { return kdTree.nodes; }
|
---|
270 | set { kdTree.nodes = value; }
|
---|
271 | }
|
---|
272 | [Storable]
|
---|
273 | public int KDTreeNormType {
|
---|
274 | get { return kdTree.normtype; }
|
---|
275 | set { kdTree.normtype = value; }
|
---|
276 | }
|
---|
277 | [Storable]
|
---|
278 | public int KDTreeNX {
|
---|
279 | get { return kdTree.nx; }
|
---|
280 | set { kdTree.nx = value; }
|
---|
281 | }
|
---|
282 | [Storable]
|
---|
283 | public int KDTreeNY {
|
---|
284 | get { return kdTree.ny; }
|
---|
285 | set { kdTree.ny = value; }
|
---|
286 | }
|
---|
287 | [Storable]
|
---|
288 | public double[] KDTreeR {
|
---|
289 | get { return kdTree.r; }
|
---|
290 | set { kdTree.r = value; }
|
---|
291 | }
|
---|
292 | [Storable]
|
---|
293 | public double KDTreeRNeeded {
|
---|
294 | get { return kdTree.rneeded; }
|
---|
295 | set { kdTree.rneeded = value; }
|
---|
296 | }
|
---|
297 | [Storable]
|
---|
298 | public bool KDTreeSelfMatch {
|
---|
299 | get { return kdTree.selfmatch; }
|
---|
300 | set { kdTree.selfmatch = value; }
|
---|
301 | }
|
---|
302 | [Storable]
|
---|
303 | public double[] KDTreeSplits {
|
---|
304 | get { return kdTree.splits; }
|
---|
305 | set { kdTree.splits = value; }
|
---|
306 | }
|
---|
307 | [Storable]
|
---|
308 | public int[] KDTreeTags {
|
---|
309 | get { return kdTree.tags; }
|
---|
310 | set { kdTree.tags = value; }
|
---|
311 | }
|
---|
312 | [Storable]
|
---|
313 | public double[] KDTreeX {
|
---|
314 | get { return kdTree.x; }
|
---|
315 | set { kdTree.x = value; }
|
---|
316 | }
|
---|
317 | [Storable]
|
---|
318 | public double[,] KDTreeXY {
|
---|
319 | get { return kdTree.xy; }
|
---|
320 | set { kdTree.xy = value; }
|
---|
321 | }
|
---|
322 | #endregion
|
---|
323 | }
|
---|
324 | }
|
---|