1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence;
|
---|
31 | using HeuristicLab.Problems.Instances;
|
---|
32 | using HeuristicLab.Random;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Problems.PTSP {
|
---|
35 | [Item("Estimated Probabilistic Traveling Salesman Problem (PTSP)", "Represents a probabilistic traveling salesman problem where the expected tour length is estimated by averaging over the length of tours on a number of, so called, realizations.")]
|
---|
36 | [Creatable(CreatableAttribute.Categories.CombinatorialProblems)]
|
---|
37 | [StorableType("847fcc3f-0f17-47aa-9d0c-a7b64f8f0396")]
|
---|
38 | public sealed class EstimatedProbabilisticTravelingSalesmanProblem : ProbabilisticTravelingSalesmanProblem {
|
---|
39 |
|
---|
40 | #region Parameter Properties
|
---|
41 | public IValueParameter<ItemList<BoolArray>> RealizationsParameter {
|
---|
42 | get { return (IValueParameter<ItemList<BoolArray>>)Parameters["Realizations"]; }
|
---|
43 | }
|
---|
44 | public IFixedValueParameter<IntValue> RealizationsSizeParameter {
|
---|
45 | get { return (IFixedValueParameter<IntValue>)Parameters["RealizationsSize"]; }
|
---|
46 | }
|
---|
47 | #endregion
|
---|
48 |
|
---|
49 | #region Properties
|
---|
50 | public ItemList<BoolArray> Realizations {
|
---|
51 | get { return RealizationsParameter.Value; }
|
---|
52 | set { RealizationsParameter.Value = value; }
|
---|
53 | }
|
---|
54 |
|
---|
55 | public int RealizationsSize {
|
---|
56 | get { return RealizationsSizeParameter.Value.Value; }
|
---|
57 | set { RealizationsSizeParameter.Value.Value = value; }
|
---|
58 | }
|
---|
59 | #endregion
|
---|
60 |
|
---|
61 | [StorableConstructor]
|
---|
62 | private EstimatedProbabilisticTravelingSalesmanProblem(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
63 | private EstimatedProbabilisticTravelingSalesmanProblem(EstimatedProbabilisticTravelingSalesmanProblem original, Cloner cloner)
|
---|
64 | : base(original, cloner) {
|
---|
65 | RegisterEventHandlers();
|
---|
66 | }
|
---|
67 | public EstimatedProbabilisticTravelingSalesmanProblem() {
|
---|
68 | Parameters.Add(new FixedValueParameter<IntValue>("RealizationsSize", "Size of the sample for the estimation-based evaluation", new IntValue(100)));
|
---|
69 | Parameters.Add(new ValueParameter<ItemList<BoolArray>>("Realizations", "The list of samples drawn from all possible stochastic instances.", new ItemList<BoolArray>()));
|
---|
70 |
|
---|
71 | Operators.Add(new BestPTSPSolutionAnalyzer());
|
---|
72 |
|
---|
73 | Operators.Add(new PTSPEstimatedInversionMoveEvaluator());
|
---|
74 | Operators.Add(new PTSPEstimatedInsertionMoveEvaluator());
|
---|
75 | Operators.Add(new PTSPEstimatedInversionLocalImprovement());
|
---|
76 | Operators.Add(new PTSPEstimatedInsertionLocalImprovement());
|
---|
77 | Operators.Add(new PTSPEstimatedTwoPointFiveLocalImprovement());
|
---|
78 |
|
---|
79 | Operators.Add(new ExhaustiveTwoPointFiveMoveGenerator());
|
---|
80 | Operators.Add(new StochasticTwoPointFiveMultiMoveGenerator());
|
---|
81 | Operators.Add(new StochasticTwoPointFiveSingleMoveGenerator());
|
---|
82 | Operators.Add(new TwoPointFiveMoveMaker());
|
---|
83 | Operators.Add(new PTSPEstimatedTwoPointFiveMoveEvaluator());
|
---|
84 |
|
---|
85 | Operators.RemoveAll(x => x is SingleObjectiveMoveGenerator);
|
---|
86 | Operators.RemoveAll(x => x is SingleObjectiveMoveMaker);
|
---|
87 | Operators.RemoveAll(x => x is SingleObjectiveMoveEvaluator);
|
---|
88 |
|
---|
89 | Encoding.ConfigureOperators(Operators.OfType<IOperator>());
|
---|
90 | foreach (var twopointfiveMoveOperator in Operators.OfType<ITwoPointFiveMoveOperator>()) {
|
---|
91 | twopointfiveMoveOperator.TwoPointFiveMoveParameter.ActualName = "Permutation.TwoPointFiveMove";
|
---|
92 | }
|
---|
93 |
|
---|
94 | UpdateRealizations();
|
---|
95 | RegisterEventHandlers();
|
---|
96 | }
|
---|
97 |
|
---|
98 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
99 | return new EstimatedProbabilisticTravelingSalesmanProblem(this, cloner);
|
---|
100 | }
|
---|
101 |
|
---|
102 | [StorableHook(HookType.AfterDeserialization)]
|
---|
103 | private void AfterDeserialization() {
|
---|
104 | RegisterEventHandlers();
|
---|
105 | }
|
---|
106 |
|
---|
107 | private void RegisterEventHandlers() {
|
---|
108 | RealizationsSizeParameter.Value.ValueChanged += RealizationsSizeParameter_ValueChanged;
|
---|
109 | }
|
---|
110 |
|
---|
111 | private void RealizationsSizeParameter_ValueChanged(object sender, EventArgs e) {
|
---|
112 | UpdateRealizations();
|
---|
113 | }
|
---|
114 |
|
---|
115 | public override double Evaluate(Permutation tour, IRandom random) {
|
---|
116 | // abeham: Cache parameters in local variables for performance reasons
|
---|
117 | var realizations = Realizations;
|
---|
118 | var realizationsSize = RealizationsSize;
|
---|
119 | var useDistanceMatrix = UseDistanceMatrix;
|
---|
120 | var distanceMatrix = DistanceMatrix;
|
---|
121 | var distanceCalculator = DistanceCalculator;
|
---|
122 | var coordinates = Coordinates;
|
---|
123 |
|
---|
124 | // Estimation-based evaluation, here without calculating variance for faster evaluation
|
---|
125 | var estimatedSum = 0.0;
|
---|
126 | for (var i = 0; i < realizations.Count; i++) {
|
---|
127 | int singleRealization = -1, firstNode = -1;
|
---|
128 | for (var j = 0; j < realizations[i].Length; j++) {
|
---|
129 | if (realizations[i][tour[j]]) {
|
---|
130 | if (singleRealization != -1) {
|
---|
131 | estimatedSum += useDistanceMatrix ? distanceMatrix[singleRealization, tour[j]] : distanceCalculator.Calculate(singleRealization, tour[j], coordinates);
|
---|
132 | } else {
|
---|
133 | firstNode = tour[j];
|
---|
134 | }
|
---|
135 | singleRealization = tour[j];
|
---|
136 | }
|
---|
137 | }
|
---|
138 | if (singleRealization != -1) {
|
---|
139 | estimatedSum += useDistanceMatrix ? distanceMatrix[singleRealization, firstNode] : distanceCalculator.Calculate(singleRealization, firstNode, coordinates);
|
---|
140 | }
|
---|
141 | }
|
---|
142 | return estimatedSum / realizationsSize;
|
---|
143 | }
|
---|
144 |
|
---|
145 | /// <summary>
|
---|
146 | /// An evaluate method that can be used if mean as well as variance should be calculated
|
---|
147 | /// </summary>
|
---|
148 | /// <param name="tour">The tour between all cities.</param>
|
---|
149 | /// <param name="distanceMatrix">The distances between the cities.</param>
|
---|
150 | /// <param name="realizations">A sample of realizations of the stochastic instance</param>
|
---|
151 | /// <param name="variance">The estimated variance will be returned in addition to the mean.</param>
|
---|
152 | /// <returns>A vector with length two containing mean and variance.</returns>
|
---|
153 | public static double Evaluate(Permutation tour, DistanceMatrix distanceMatrix, ItemList<BoolArray> realizations, out double variance) {
|
---|
154 | return Evaluate(tour, (a, b) => distanceMatrix[a, b], realizations, out variance);
|
---|
155 | }
|
---|
156 |
|
---|
157 | /// <summary>
|
---|
158 | /// An evaluate method that can be used if mean as well as variance should be calculated
|
---|
159 | /// </summary>
|
---|
160 | /// <param name="tour">The tour between all cities.</param>
|
---|
161 | /// <param name="distance">A func that accepts the index of two cities and returns the distance as a double.</param>
|
---|
162 | /// <param name="realizations">A sample of realizations of the stochastic instance</param>
|
---|
163 | /// <param name="variance">The estimated variance will be returned in addition to the mean.</param>
|
---|
164 | /// <returns>A vector with length two containing mean and variance.</returns>
|
---|
165 | public static double Evaluate(Permutation tour, Func<int, int, double> distance, ItemList<BoolArray> realizations, out double variance) {
|
---|
166 | // Estimation-based evaluation
|
---|
167 | var estimatedSum = 0.0;
|
---|
168 | var partialSums = new double[realizations.Count];
|
---|
169 | for (var i = 0; i < realizations.Count; i++) {
|
---|
170 | partialSums[i] = 0;
|
---|
171 | int singleRealization = -1, firstNode = -1;
|
---|
172 | for (var j = 0; j < realizations[i].Length; j++) {
|
---|
173 | if (realizations[i][tour[j]]) {
|
---|
174 | if (singleRealization != -1) {
|
---|
175 | partialSums[i] += distance(singleRealization, tour[j]);
|
---|
176 | } else {
|
---|
177 | firstNode = tour[j];
|
---|
178 | }
|
---|
179 | singleRealization = tour[j];
|
---|
180 | }
|
---|
181 | }
|
---|
182 | if (singleRealization != -1) {
|
---|
183 | partialSums[i] += distance(singleRealization, firstNode);
|
---|
184 | }
|
---|
185 | estimatedSum += partialSums[i];
|
---|
186 | }
|
---|
187 | var mean = estimatedSum / realizations.Count;
|
---|
188 | variance = 0.0;
|
---|
189 | for (var i = 0; i < realizations.Count; i++) {
|
---|
190 | variance += Math.Pow((partialSums[i] - mean), 2);
|
---|
191 | }
|
---|
192 | variance = variance / realizations.Count;
|
---|
193 | return mean;
|
---|
194 | }
|
---|
195 |
|
---|
196 | public override void Load(PTSPData data) {
|
---|
197 | base.Load(data);
|
---|
198 | UpdateRealizations();
|
---|
199 |
|
---|
200 | foreach (var op in Operators.OfType<IEstimatedPTSPOperator>()) {
|
---|
201 | op.RealizationsParameter.ActualName = RealizationsParameter.Name;
|
---|
202 | }
|
---|
203 | }
|
---|
204 |
|
---|
205 | private void UpdateRealizations() {
|
---|
206 | var realizations = new ItemList<BoolArray>(RealizationsSize);
|
---|
207 | var rand = new MersenneTwister();
|
---|
208 | for (var i = 0; i < RealizationsSize; i++) {
|
---|
209 | var newRealization = new BoolArray(Probabilities.Length);
|
---|
210 | var countOnes = 0;
|
---|
211 | do {
|
---|
212 | countOnes = 0;
|
---|
213 | for (var j = 0; j < Probabilities.Length; j++) {
|
---|
214 | newRealization[j] = Probabilities[j] < rand.NextDouble();
|
---|
215 | if (newRealization[j]) countOnes++;
|
---|
216 | }
|
---|
217 | // only generate realizations with at least 4 cities visited
|
---|
218 | } while (countOnes < 4 && Probabilities.Length > 3);
|
---|
219 | realizations.Add(newRealization);
|
---|
220 | }
|
---|
221 | Realizations = realizations;
|
---|
222 | }
|
---|
223 | }
|
---|
224 | } |
---|