1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Diagnostics.Contracts;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence;
|
---|
32 |
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Problems.GeneticProgramming.ArtificialAnt {
|
---|
35 | [Item("Artificial Ant Problem", "Represents the Artificial Ant problem.")]
|
---|
36 | [Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 170)]
|
---|
37 | [StorableType("ecb1831f-a9c7-4944-a6cc-ce2f175849c4")]
|
---|
38 | public sealed class Problem : SymbolicExpressionTreeProblem, IStorableContent {
|
---|
39 |
|
---|
40 | #region constant for default world (Santa Fe)
|
---|
41 |
|
---|
42 | private static readonly char[][] santaFeAntTrail = new[] {
|
---|
43 | " ### ".ToCharArray(),
|
---|
44 | " # ".ToCharArray(),
|
---|
45 | " # .###.. ".ToCharArray(),
|
---|
46 | " # # # ".ToCharArray(),
|
---|
47 | " # # # ".ToCharArray(),
|
---|
48 | " ####.##### .##.. . ".ToCharArray(),
|
---|
49 | " # . # ".ToCharArray(),
|
---|
50 | " # # . ".ToCharArray(),
|
---|
51 | " # # . ".ToCharArray(),
|
---|
52 | " # # # ".ToCharArray(),
|
---|
53 | " . # . ".ToCharArray(),
|
---|
54 | " # . . ".ToCharArray(),
|
---|
55 | " # . # ".ToCharArray(),
|
---|
56 | " # # . ".ToCharArray(),
|
---|
57 | " # # ...###. ".ToCharArray(),
|
---|
58 | " . .#... # ".ToCharArray(),
|
---|
59 | " . . . ".ToCharArray(),
|
---|
60 | " # . . ".ToCharArray(),
|
---|
61 | " # # .#... ".ToCharArray(),
|
---|
62 | " # # # ".ToCharArray(),
|
---|
63 | " # # . ".ToCharArray(),
|
---|
64 | " # # . ".ToCharArray(),
|
---|
65 | " # . ...#. ".ToCharArray(),
|
---|
66 | " # . # ".ToCharArray(),
|
---|
67 | " ..##..#####. # ".ToCharArray(),
|
---|
68 | " # # ".ToCharArray(),
|
---|
69 | " # # ".ToCharArray(),
|
---|
70 | " # .#######.. ".ToCharArray(),
|
---|
71 | " # # ".ToCharArray(),
|
---|
72 | " . # ".ToCharArray(),
|
---|
73 | " .####.. ".ToCharArray(),
|
---|
74 | " ".ToCharArray()
|
---|
75 | };
|
---|
76 |
|
---|
77 |
|
---|
78 | #endregion
|
---|
79 |
|
---|
80 | #region Parameter Properties
|
---|
81 | public IValueParameter<BoolMatrix> WorldParameter {
|
---|
82 | get { return (IValueParameter<BoolMatrix>)Parameters["World"]; }
|
---|
83 | }
|
---|
84 | public IValueParameter<IntValue> MaxTimeStepsParameter {
|
---|
85 | get { return (IValueParameter<IntValue>)Parameters["MaximumTimeSteps"]; }
|
---|
86 | }
|
---|
87 | #endregion
|
---|
88 |
|
---|
89 | #region Properties
|
---|
90 | public BoolMatrix World {
|
---|
91 | get { return WorldParameter.Value; }
|
---|
92 | set { WorldParameter.Value = value; }
|
---|
93 | }
|
---|
94 | public IntValue MaxTimeSteps {
|
---|
95 | get { return MaxTimeStepsParameter.Value; }
|
---|
96 | set { MaxTimeStepsParameter.Value = value; }
|
---|
97 | }
|
---|
98 | #endregion
|
---|
99 |
|
---|
100 | public override bool Maximization {
|
---|
101 | get { return true; }
|
---|
102 | }
|
---|
103 |
|
---|
104 | #region item cloning and persistence
|
---|
105 | // persistence
|
---|
106 | [StorableConstructor]
|
---|
107 | private Problem(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
108 | [StorableHook(HookType.AfterDeserialization)]
|
---|
109 | private void AfterDeserialization() { }
|
---|
110 |
|
---|
111 | // cloning
|
---|
112 | private Problem(Problem original, Cloner cloner) : base(original, cloner) { }
|
---|
113 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
114 | return new Problem(this, cloner);
|
---|
115 | }
|
---|
116 | #endregion
|
---|
117 |
|
---|
118 | public Problem()
|
---|
119 | : base() {
|
---|
120 | BoolMatrix world = new BoolMatrix(ToBoolMatrix(santaFeAntTrail));
|
---|
121 | Parameters.Add(new ValueParameter<BoolMatrix>("World", "The world for the artificial ant with scattered food items.", world));
|
---|
122 | Parameters.Add(new ValueParameter<IntValue>("MaximumTimeSteps", "The number of time steps the artificial ant has available to collect all food items.", new IntValue(600)));
|
---|
123 |
|
---|
124 | base.BestKnownQuality = 89;
|
---|
125 | var g = new SimpleSymbolicExpressionGrammar();
|
---|
126 | g.AddSymbols(new string[] { "IfFoodAhead", "Prog2" }, 2, 2);
|
---|
127 | g.AddSymbols(new string[] { "Prog3" }, 3, 3);
|
---|
128 | g.AddTerminalSymbols(new string[] { "Move", "Left", "Right" });
|
---|
129 | base.Encoding = new SymbolicExpressionTreeEncoding(g, 20, 10);
|
---|
130 | }
|
---|
131 |
|
---|
132 |
|
---|
133 | public override double Evaluate(ISymbolicExpressionTree tree, IRandom random) {
|
---|
134 | var interpreter = new Interpreter(tree, World, MaxTimeSteps.Value);
|
---|
135 | interpreter.Run();
|
---|
136 | return interpreter.FoodEaten;
|
---|
137 | }
|
---|
138 |
|
---|
139 | public override void Analyze(ISymbolicExpressionTree[] trees, double[] qualities, ResultCollection results, IRandom random) {
|
---|
140 | const string bestSolutionResultName = "Best Solution";
|
---|
141 | var bestQuality = Maximization ? qualities.Max() : qualities.Min();
|
---|
142 | var bestIdx = Array.IndexOf(qualities, bestQuality);
|
---|
143 |
|
---|
144 | if (!results.ContainsKey(bestSolutionResultName)) {
|
---|
145 | results.Add(new Result(bestSolutionResultName, new Solution(World, trees[bestIdx], MaxTimeSteps.Value, qualities[bestIdx])));
|
---|
146 | } else if (((Solution)(results[bestSolutionResultName].Value)).Quality < qualities[bestIdx]) {
|
---|
147 | results[bestSolutionResultName].Value = new Solution(World, trees[bestIdx], MaxTimeSteps.Value, qualities[bestIdx]);
|
---|
148 | }
|
---|
149 | }
|
---|
150 |
|
---|
151 | #region helpers
|
---|
152 | private bool[,] ToBoolMatrix(char[][] ch) {
|
---|
153 | var rows = ch.Length;
|
---|
154 | var cols = ch[0].Length;
|
---|
155 | var b = new bool[rows, cols];
|
---|
156 | for (int r = 0; r < rows; r++) {
|
---|
157 | Contract.Assert(ch[r].Length == cols); // all rows must have the same number of columns
|
---|
158 | for (int c = 0; c < cols; c++) {
|
---|
159 | b[r, c] = ch[r][c] == '#';
|
---|
160 | }
|
---|
161 | }
|
---|
162 | return b;
|
---|
163 | }
|
---|
164 | #endregion
|
---|
165 | }
|
---|
166 | }
|
---|