1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
27 | using HeuristicLab.Persistence;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis {
|
---|
31 | /// <summary>
|
---|
32 | /// Represents a symbolic time-series prognosis model
|
---|
33 | /// </summary>
|
---|
34 | [StorableType("c907515c-e3d7-4197-8af3-b7f4d16bc900")]
|
---|
35 | [Item(Name = "Symbolic Time-Series Prognosis Model", Description = "Represents a symbolic time series prognosis model.")]
|
---|
36 | public class SymbolicTimeSeriesPrognosisModel : SymbolicRegressionModel, ISymbolicTimeSeriesPrognosisModel {
|
---|
37 |
|
---|
38 | public new ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter Interpreter {
|
---|
39 | get { return (ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter)base.Interpreter; }
|
---|
40 | }
|
---|
41 |
|
---|
42 | [StorableConstructor]
|
---|
43 | protected SymbolicTimeSeriesPrognosisModel(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
44 | protected SymbolicTimeSeriesPrognosisModel(SymbolicTimeSeriesPrognosisModel original, Cloner cloner) : base(original, cloner) { }
|
---|
45 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
46 | return new SymbolicTimeSeriesPrognosisModel(this, cloner);
|
---|
47 | }
|
---|
48 |
|
---|
49 | public SymbolicTimeSeriesPrognosisModel(string targetVariable, ISymbolicExpressionTree tree, ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter interpreter, double lowerLimit = double.MinValue, double upperLimit = double.MaxValue) : base(targetVariable, tree, interpreter, lowerLimit, upperLimit) { }
|
---|
50 |
|
---|
51 | public IEnumerable<IEnumerable<double>> GetPrognosedValues(IDataset dataset, IEnumerable<int> rows, IEnumerable<int> horizons) {
|
---|
52 | var estimatedValues = Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, rows, horizons);
|
---|
53 | return estimatedValues.Select(predictionPerRow => predictionPerRow.LimitToRange(LowerEstimationLimit, UpperEstimationLimit));
|
---|
54 | }
|
---|
55 |
|
---|
56 | public ISymbolicTimeSeriesPrognosisSolution CreateTimeSeriesPrognosisSolution(ITimeSeriesPrognosisProblemData problemData) {
|
---|
57 | return new SymbolicTimeSeriesPrognosisSolution(this, new TimeSeriesPrognosisProblemData(problemData));
|
---|
58 | }
|
---|
59 | ITimeSeriesPrognosisSolution ITimeSeriesPrognosisModel.CreateTimeSeriesPrognosisSolution(ITimeSeriesPrognosisProblemData problemData) {
|
---|
60 | return CreateTimeSeriesPrognosisSolution(problemData);
|
---|
61 | }
|
---|
62 | }
|
---|
63 | }
|
---|