1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis {
|
---|
33 | [StorableType("adcdbfc8-6222-455f-ad1f-877e0e9d9cc2")]
|
---|
34 | [Item("SymbolicTimeSeriesPrognosisInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.")]
|
---|
35 | public sealed class SymbolicTimeSeriesPrognosisExpressionTreeInterpreter : SymbolicDataAnalysisExpressionTreeInterpreter, ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter {
|
---|
36 | private const string TargetVariableParameterName = "TargetVariable";
|
---|
37 |
|
---|
38 | public IFixedValueParameter<StringValue> TargetVariableParameter {
|
---|
39 | get { return (IFixedValueParameter<StringValue>)Parameters[TargetVariableParameterName]; }
|
---|
40 | }
|
---|
41 |
|
---|
42 | public string TargetVariable {
|
---|
43 | get { return TargetVariableParameter.Value.Value; }
|
---|
44 | set { TargetVariableParameter.Value.Value = value; }
|
---|
45 | }
|
---|
46 |
|
---|
47 | [StorableConstructor]
|
---|
48 | private SymbolicTimeSeriesPrognosisExpressionTreeInterpreter(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
49 | private SymbolicTimeSeriesPrognosisExpressionTreeInterpreter(SymbolicTimeSeriesPrognosisExpressionTreeInterpreter original, Cloner cloner) : base(original, cloner) { }
|
---|
50 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
51 | return new SymbolicTimeSeriesPrognosisExpressionTreeInterpreter(this, cloner);
|
---|
52 | }
|
---|
53 |
|
---|
54 | internal SymbolicTimeSeriesPrognosisExpressionTreeInterpreter()
|
---|
55 | : base("SymbolicTimeSeriesPrognosisInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.") {
|
---|
56 | Parameters.Add(new FixedValueParameter<StringValue>(TargetVariableParameterName));
|
---|
57 | TargetVariableParameter.Hidden = true;
|
---|
58 | }
|
---|
59 |
|
---|
60 | public SymbolicTimeSeriesPrognosisExpressionTreeInterpreter(string targetVariable)
|
---|
61 | : this() {
|
---|
62 | TargetVariable = targetVariable;
|
---|
63 | }
|
---|
64 |
|
---|
65 | // for each row several (=#horizon) future predictions
|
---|
66 | public IEnumerable<IEnumerable<double>> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, IDataset dataset, IEnumerable<int> rows, int horizon) {
|
---|
67 | return GetSymbolicExpressionTreeValues(tree, dataset, rows, rows.Select(row => horizon));
|
---|
68 | }
|
---|
69 |
|
---|
70 | private readonly object syncRoot = new object();
|
---|
71 | public IEnumerable<IEnumerable<double>> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, IDataset dataset, IEnumerable<int> rows, IEnumerable<int> horizons) {
|
---|
72 | if (CheckExpressionsWithIntervalArithmetic)
|
---|
73 | throw new NotSupportedException("Interval arithmetic is not yet supported in the symbolic data analysis interpreter.");
|
---|
74 |
|
---|
75 | string targetVariable = TargetVariable;
|
---|
76 | double[] targetVariableCache = dataset.GetDoubleValues(targetVariable).ToArray();
|
---|
77 | lock (syncRoot) {
|
---|
78 | EvaluatedSolutions++; // increment the evaluated solutions counter
|
---|
79 | }
|
---|
80 | var state = PrepareInterpreterState(tree, dataset, targetVariableCache, TargetVariable);
|
---|
81 | var rowsEnumerator = rows.GetEnumerator();
|
---|
82 | var horizonsEnumerator = horizons.GetEnumerator();
|
---|
83 |
|
---|
84 | // produce a n-step forecast for all rows
|
---|
85 | while (rowsEnumerator.MoveNext() & horizonsEnumerator.MoveNext()) {
|
---|
86 | int row = rowsEnumerator.Current;
|
---|
87 | int horizon = horizonsEnumerator.Current;
|
---|
88 | double[] vProgs = new double[horizon];
|
---|
89 |
|
---|
90 | for (int i = 0; i < horizon; i++) {
|
---|
91 | int localRow = i + row; // create a local variable for the ref parameter
|
---|
92 | vProgs[i] = Evaluate(dataset, ref localRow, state);
|
---|
93 | targetVariableCache[localRow] = vProgs[i];
|
---|
94 | state.Reset();
|
---|
95 | }
|
---|
96 | yield return vProgs;
|
---|
97 | }
|
---|
98 |
|
---|
99 | if (rowsEnumerator.MoveNext() || horizonsEnumerator.MoveNext())
|
---|
100 | throw new ArgumentException("Number of elements in rows and horizon enumerations doesn't match.");
|
---|
101 | }
|
---|
102 |
|
---|
103 | private static InterpreterState PrepareInterpreterState(ISymbolicExpressionTree tree, IDataset dataset, double[] targetVariableCache, string targetVariable) {
|
---|
104 | Instruction[] code = SymbolicExpressionTreeCompiler.Compile(tree, OpCodes.MapSymbolToOpCode);
|
---|
105 | int necessaryArgStackSize = 0;
|
---|
106 | foreach (Instruction instr in code) {
|
---|
107 | if (instr.opCode == OpCodes.Variable) {
|
---|
108 | var variableTreeNode = (VariableTreeNode)instr.dynamicNode;
|
---|
109 | if (variableTreeNode.VariableName == targetVariable)
|
---|
110 | instr.data = targetVariableCache;
|
---|
111 | else
|
---|
112 | instr.data = dataset.GetReadOnlyDoubleValues(variableTreeNode.VariableName);
|
---|
113 | } else if (instr.opCode == OpCodes.LagVariable) {
|
---|
114 | var variableTreeNode = (LaggedVariableTreeNode)instr.dynamicNode;
|
---|
115 | if (variableTreeNode.VariableName == targetVariable)
|
---|
116 | instr.data = targetVariableCache;
|
---|
117 | else
|
---|
118 | instr.data = dataset.GetReadOnlyDoubleValues(variableTreeNode.VariableName);
|
---|
119 | } else if (instr.opCode == OpCodes.VariableCondition) {
|
---|
120 | var variableTreeNode = (VariableConditionTreeNode)instr.dynamicNode;
|
---|
121 | if (variableTreeNode.VariableName == targetVariable)
|
---|
122 | instr.data = targetVariableCache;
|
---|
123 | else
|
---|
124 | instr.data = dataset.GetReadOnlyDoubleValues(variableTreeNode.VariableName);
|
---|
125 | } else if (instr.opCode == OpCodes.Call) {
|
---|
126 | necessaryArgStackSize += instr.nArguments + 1;
|
---|
127 | }
|
---|
128 | }
|
---|
129 |
|
---|
130 | return new InterpreterState(code, necessaryArgStackSize);
|
---|
131 | }
|
---|
132 | }
|
---|
133 | }
|
---|