1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Persistence;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Encodings.PermutationEncoding {
|
---|
28 | /// <summary>An operator which performs the maximal preservative crossover on two permutations.</summary>
|
---|
29 | /// <remarks>
|
---|
30 | /// Performs a crossover between two permuation arrays by preserving a large number of edges in both parents.
|
---|
31 | /// The operator also maintains the position in the arrays to some extent.
|
---|
32 | /// It is implemented as described in Mühlenbein, H. 1991. Evolution in time and space - the parallel genetic algorithm. FOUNDATIONS OF GENETIC ALGORITHMS, pp. 316-337. Morgan Kaufmann.<br /><br />
|
---|
33 | /// The length of the segment copied from the first parent to the offspring is uniformly distributed in the interval [3;N/3) with N = length of the permutation.
|
---|
34 | /// This recommendation is mentioned in Pohlheim, H. 1999. Evolutionäre Algorithmen: Verfahren, Operatoren und Hinweise für die Praxis, p. 44, Springer.
|
---|
35 | /// If the length of the permutation is smaller than 15, the size of the segment is always equal to 3.
|
---|
36 | /// </remarks>
|
---|
37 | [Item("MaximalPreservativeCrossover", "An operator which performs the maximal preservative crossover on two permutations. It is implemented as described in Mühlenbein, H. 1991. Evolution in time and space - the parallel genetic algorithm. FOUNDATIONS OF GENETIC ALGORITHMS, pp. 316-337. Morgan Kaufmann.")]
|
---|
38 | [StorableType("ba0a0a8b-d606-4d25-a5d1-73575e5faf3e")]
|
---|
39 | public class MaximalPreservativeCrossover : PermutationCrossover {
|
---|
40 | [StorableConstructor]
|
---|
41 | protected MaximalPreservativeCrossover(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
42 | protected MaximalPreservativeCrossover(MaximalPreservativeCrossover original, Cloner cloner) : base(original, cloner) { }
|
---|
43 | public MaximalPreservativeCrossover() : base() { }
|
---|
44 |
|
---|
45 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
46 | return new MaximalPreservativeCrossover(this, cloner);
|
---|
47 | }
|
---|
48 |
|
---|
49 | /// <summary>
|
---|
50 | /// Performs the maximal preservative crossover on <paramref name="parent1"/> and <paramref name="parent2"/>
|
---|
51 | /// by preserving a large number of edges in both parents.
|
---|
52 | /// </summary>
|
---|
53 | /// <exception cref="ArgumentException">Thrown when <paramref name="parent1"/> and <paramref name="parent2"/> are not of equal length or when the permutations are shorter than 4 elements.</exception>
|
---|
54 | /// <exception cref="InvalidOperationException">Thrown if the numbers in the permutation elements are not in the range [0;N) with N = length of the permutation.</exception>
|
---|
55 | /// <remarks>
|
---|
56 | /// First one segment is copied from the first parent to the offspring in the same position.
|
---|
57 | /// Then the tour is completed by adding the next number from the second parent if such an edge exists,
|
---|
58 | /// or from the first parent, or from the next number of the second parent.
|
---|
59 | /// The last case results in an unwanted mutation.
|
---|
60 | /// </remarks>
|
---|
61 | /// <param name="random">A random number generator.</param>
|
---|
62 | /// <param name="parent1">The first parent permutation to cross.</param>
|
---|
63 | /// <param name="parent2">The second parent permutation to cross.</param>
|
---|
64 | /// <returns>The new permutation resulting from the crossover.</returns>
|
---|
65 | public static Permutation Apply(IRandom random, Permutation parent1, Permutation parent2) {
|
---|
66 | if (parent1.Length != parent2.Length) throw new ArgumentException("MaximalPreservativeCrossover: The parent permutations are of unequal length.");
|
---|
67 | if (parent1.Length < 4) throw new ArgumentException("MaximalPreservativeCrossover: The parent permutation must be at least of size 4.");
|
---|
68 | int length = parent1.Length;
|
---|
69 | int[] result = new int[length];
|
---|
70 | bool[] numberCopied = new bool[length];
|
---|
71 | int breakPoint1, breakPoint2, subsegmentLength, index;
|
---|
72 |
|
---|
73 | subsegmentLength = random.Next(3, Math.Max(length / 3, 4)); // as mentioned in Pohlheim, H. Evolutionäre Algorithmen: Verfahren, Operatoren und Hinweise für die Praxis, 1999, p.44, Springer.
|
---|
74 | breakPoint1 = random.Next(length);
|
---|
75 | breakPoint2 = breakPoint1 + subsegmentLength;
|
---|
76 | if (breakPoint2 >= length) breakPoint2 -= length;
|
---|
77 |
|
---|
78 | // copy string between position [breakPoint1, breakPoint2) from parent1 to the offspring
|
---|
79 | index = breakPoint1;
|
---|
80 | do {
|
---|
81 | result[index] = parent1[index];
|
---|
82 | numberCopied[result[index]] = true;
|
---|
83 | index++;
|
---|
84 | if (index >= length) index -= length;
|
---|
85 | } while (index != breakPoint2);
|
---|
86 |
|
---|
87 | // calculate inverse permutation (number -> index) to help finding the follower of a given number
|
---|
88 | int[] invParent1 = new int[length];
|
---|
89 | int[] invParent2 = new int[length];
|
---|
90 | try {
|
---|
91 | for (int i = 0; i < length; i++) {
|
---|
92 | invParent1[parent1[i]] = i;
|
---|
93 | invParent2[parent2[i]] = i;
|
---|
94 | }
|
---|
95 | } catch (IndexOutOfRangeException) {
|
---|
96 | throw new InvalidOperationException("MaximalPreservativeCrossover: The permutation must consist of numbers in the interval [0;N) with N = length of the permutation.");
|
---|
97 | }
|
---|
98 |
|
---|
99 | int prevIndex = ((index > 0) ? (index - 1) : (length - 1));
|
---|
100 | do {
|
---|
101 | // look for the follower of the last number in parent2
|
---|
102 | int p2Follower = GetFollower(parent2, invParent2[result[prevIndex]]);
|
---|
103 | if (!numberCopied[p2Follower]) {
|
---|
104 | result[index] = p2Follower;
|
---|
105 | } else {
|
---|
106 | // if that follower has already been added, look for the follower of the last number in parent1
|
---|
107 | int p1Follower = GetFollower(parent1, invParent1[result[prevIndex]]);
|
---|
108 | if (!numberCopied[p1Follower]) {
|
---|
109 | result[index] = p1Follower;
|
---|
110 | } else {
|
---|
111 | // if that has also been added, look for the next not already added number in parent2
|
---|
112 | int tempIndex = index;
|
---|
113 | for (int i = 0; i < parent2.Length; i++) {
|
---|
114 | if (!numberCopied[parent2[tempIndex]]) {
|
---|
115 | result[index] = parent2[tempIndex];
|
---|
116 | break;
|
---|
117 | }
|
---|
118 | tempIndex++;
|
---|
119 | if (tempIndex >= parent2.Length) tempIndex = 0;
|
---|
120 | }
|
---|
121 | }
|
---|
122 | }
|
---|
123 | numberCopied[result[index]] = true;
|
---|
124 | prevIndex = index;
|
---|
125 | index++;
|
---|
126 | if (index >= length) index -= length;
|
---|
127 | } while (index != breakPoint1);
|
---|
128 |
|
---|
129 | return new Permutation(parent1.PermutationType, result);
|
---|
130 | }
|
---|
131 |
|
---|
132 | private static int GetFollower(Permutation parent, int index) {
|
---|
133 | if (index + 1 == parent.Length)
|
---|
134 | return parent[0];
|
---|
135 | return parent[index + 1];
|
---|
136 | }
|
---|
137 |
|
---|
138 | /// <summary>
|
---|
139 | /// Checks number of parents and calls <see cref="Apply(IRandom, Permutation, Permutation)"/>.
|
---|
140 | /// </summary>
|
---|
141 | /// <exception cref="InvalidOperationException">Thrown if there are not exactly two permutations in <paramref name="parents"/>.</exception>
|
---|
142 | /// <param name="random">A random number generator.</param>
|
---|
143 | /// <param name="parents">An array containing the two permutations that should be crossed.</param>
|
---|
144 | /// <returns>The newly created permutation, resulting from the crossover operation.</returns>
|
---|
145 | protected override Permutation Cross(IRandom random, ItemArray<Permutation> parents) {
|
---|
146 | if (parents.Length != 2) throw new InvalidOperationException("MaximalPreservativeCrossover: Number of parents is not equal to 2.");
|
---|
147 | return Apply(random, parents[0], parents[1]);
|
---|
148 | }
|
---|
149 | }
|
---|
150 | }
|
---|