1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Persistence;
|
---|
28 | using HeuristicLab.Random;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Encodings.LinearLinkageEncoding {
|
---|
31 | [Item("Lowest Index Max Crossover", "The Lowest Index Max Crossover (LIMX) is implemented as described in Ülker, Ö., Özcan, E., Korkmaz, E. E. 2007. Linear linkage encoding in grouping problems: applications on graph coloring and timetabling. In Practice and Theory of Automated Timetabling VI, pp. 347-363. Springer Berlin Heidelberg.")]
|
---|
32 | [StorableType("d76326a9-5256-40e8-bfbb-30f4afe9d745")]
|
---|
33 | public sealed class LowestIndexMaxCrossover : LinearLinkageCrossover {
|
---|
34 |
|
---|
35 | [StorableConstructor]
|
---|
36 | private LowestIndexMaxCrossover(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
37 | private LowestIndexMaxCrossover(LowestIndexMaxCrossover original, Cloner cloner) : base(original, cloner) { }
|
---|
38 | public LowestIndexMaxCrossover() { }
|
---|
39 |
|
---|
40 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
41 | return new LowestIndexMaxCrossover(this, cloner);
|
---|
42 | }
|
---|
43 |
|
---|
44 | public static LinearLinkage Apply(IRandom random, ItemArray<LinearLinkage> parents) {
|
---|
45 | var len = parents[0].Length;
|
---|
46 | var child = LinearLinkage.SingleElementGroups(len);
|
---|
47 | var remaining = new SortedSet<int>(Enumerable.Range(0, len));
|
---|
48 | do {
|
---|
49 | var groups = parents.Select(x => x.GetGroupForward(remaining.Min).Where(y => remaining.Contains(y)).ToList()).ToList();
|
---|
50 | var max = groups.Select((v, idx) => Tuple.Create(idx, v.Count)).MaxItems(x => x.Item2).SampleRandom(random).Item1;
|
---|
51 | var i = groups[max][0];
|
---|
52 | for (var k = 1; k < groups[max].Count; k++) {
|
---|
53 | child[i] = groups[max][k];
|
---|
54 | remaining.Remove(i);
|
---|
55 | i = child[i];
|
---|
56 | }
|
---|
57 | child[i] = i;
|
---|
58 | remaining.Remove(i);
|
---|
59 | } while (remaining.Count > 0);
|
---|
60 |
|
---|
61 | return child;
|
---|
62 | }
|
---|
63 |
|
---|
64 | protected override LinearLinkage Cross(IRandom random, ItemArray<LinearLinkage> parents) {
|
---|
65 | return Apply(random, parents);
|
---|
66 | }
|
---|
67 | }
|
---|
68 | }
|
---|