1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Persistence;
|
---|
28 | using HeuristicLab.Random;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Encodings.LinearLinkageEncoding {
|
---|
31 | [Item("Greedy Partition Crossover", "The Greedy Partition Crossover (GPX) is implemented as described in Ülker, Ö., Özcan, E., Korkmaz, E. E. 2007. Linear linkage encoding in grouping problems: applications on graph coloring and timetabling. In Practice and Theory of Automated Timetabling VI, pp. 347-363. Springer Berlin Heidelberg.")]
|
---|
32 | [StorableType("fb693fff-4a0f-435e-8994-3901424fb8f7")]
|
---|
33 | public sealed class GreedyPartitionCrossover : LinearLinkageCrossover {
|
---|
34 |
|
---|
35 | [StorableConstructor]
|
---|
36 | private GreedyPartitionCrossover(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
37 | private GreedyPartitionCrossover(GreedyPartitionCrossover original, Cloner cloner) : base(original, cloner) { }
|
---|
38 | public GreedyPartitionCrossover() { }
|
---|
39 |
|
---|
40 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
41 | return new GreedyPartitionCrossover(this, cloner);
|
---|
42 | }
|
---|
43 |
|
---|
44 | public static LinearLinkage Apply(IRandom random, ItemArray<LinearLinkage> parents) {
|
---|
45 | var len = parents[0].Length;
|
---|
46 | var childGroup = new List<HashSet<int>>();
|
---|
47 | var currentParent = random.Next(parents.Length);
|
---|
48 | var groups = parents.Select(x => x.GetGroups().Select(y => new HashSet<int>(y)).ToList()).ToList();
|
---|
49 | bool remaining;
|
---|
50 | do {
|
---|
51 | var maxGroup = groups[currentParent].Select((v, i) => Tuple.Create(i, v))
|
---|
52 | .MaxItems(x => x.Item2.Count)
|
---|
53 | .SampleRandom(random).Item1;
|
---|
54 | var group = groups[currentParent][maxGroup];
|
---|
55 | groups[currentParent].RemoveAt(maxGroup);
|
---|
56 | childGroup.Add(group);
|
---|
57 |
|
---|
58 | remaining = false;
|
---|
59 | for (var p = 0; p < groups.Count; p++) {
|
---|
60 | for (var j = 0; j < groups[p].Count; j++) {
|
---|
61 | foreach (var elem in group) groups[p][j].Remove(elem);
|
---|
62 | if (!remaining && groups[p][j].Count > 0) remaining = true;
|
---|
63 | }
|
---|
64 | }
|
---|
65 |
|
---|
66 | currentParent = (currentParent + 1) % parents.Length;
|
---|
67 | } while (remaining);
|
---|
68 |
|
---|
69 | return LinearLinkage.FromGroups(len, childGroup);
|
---|
70 | }
|
---|
71 |
|
---|
72 | protected override LinearLinkage Cross(IRandom random, ItemArray<LinearLinkage> parents) {
|
---|
73 | return Apply(random, parents);
|
---|
74 | }
|
---|
75 | }
|
---|
76 | }
|
---|