1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Common;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.Operators;
|
---|
26 | using HeuristicLab.Optimization.Operators;
|
---|
27 | using HeuristicLab.Parameters;
|
---|
28 | using HeuristicLab.Persistence;
|
---|
29 | using HeuristicLab.Selection;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm {
|
---|
32 | /// <summary>
|
---|
33 | /// An operator which represents the main loop of an offspring selection genetic algorithm.
|
---|
34 | /// </summary>
|
---|
35 | [Item("OffspringSelectionGeneticAlgorithmMainOperator", "An operator that represents the core of an offspring selection genetic algorithm.")]
|
---|
36 | [StorableType("9b958d25-1d53-47bf-b1fc-cfbefd7b8992")]
|
---|
37 | public sealed class OffspringSelectionGeneticAlgorithmMainOperator : AlgorithmOperator {
|
---|
38 | #region Parameter properties
|
---|
39 | public ValueLookupParameter<IRandom> RandomParameter {
|
---|
40 | get { return (ValueLookupParameter<IRandom>)Parameters["Random"]; }
|
---|
41 | }
|
---|
42 | public ValueLookupParameter<BoolValue> MaximizationParameter {
|
---|
43 | get { return (ValueLookupParameter<BoolValue>)Parameters["Maximization"]; }
|
---|
44 | }
|
---|
45 | public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
46 | get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
47 | }
|
---|
48 | public ValueLookupParameter<IOperator> SelectorParameter {
|
---|
49 | get { return (ValueLookupParameter<IOperator>)Parameters["Selector"]; }
|
---|
50 | }
|
---|
51 | public ValueLookupParameter<IOperator> CrossoverParameter {
|
---|
52 | get { return (ValueLookupParameter<IOperator>)Parameters["Crossover"]; }
|
---|
53 | }
|
---|
54 | public ValueLookupParameter<PercentValue> MutationProbabilityParameter {
|
---|
55 | get { return (ValueLookupParameter<PercentValue>)Parameters["MutationProbability"]; }
|
---|
56 | }
|
---|
57 | public ValueLookupParameter<IOperator> MutatorParameter {
|
---|
58 | get { return (ValueLookupParameter<IOperator>)Parameters["Mutator"]; }
|
---|
59 | }
|
---|
60 | public ValueLookupParameter<IOperator> EvaluatorParameter {
|
---|
61 | get { return (ValueLookupParameter<IOperator>)Parameters["Evaluator"]; }
|
---|
62 | }
|
---|
63 | public LookupParameter<IntValue> EvaluatedSolutionsParameter {
|
---|
64 | get { return (LookupParameter<IntValue>)Parameters["EvaluatedSolutions"]; }
|
---|
65 | }
|
---|
66 | public ValueLookupParameter<IntValue> ElitesParameter {
|
---|
67 | get { return (ValueLookupParameter<IntValue>)Parameters["Elites"]; }
|
---|
68 | }
|
---|
69 | public IValueLookupParameter<BoolValue> ReevaluateElitesParameter {
|
---|
70 | get { return (IValueLookupParameter<BoolValue>)Parameters["ReevaluateElites"]; }
|
---|
71 | }
|
---|
72 | public LookupParameter<DoubleValue> ComparisonFactorParameter {
|
---|
73 | get { return (LookupParameter<DoubleValue>)Parameters["ComparisonFactor"]; }
|
---|
74 | }
|
---|
75 | public LookupParameter<DoubleValue> CurrentSuccessRatioParameter {
|
---|
76 | get { return (LookupParameter<DoubleValue>)Parameters["CurrentSuccessRatio"]; }
|
---|
77 | }
|
---|
78 | public ValueLookupParameter<DoubleValue> SuccessRatioParameter {
|
---|
79 | get { return (ValueLookupParameter<DoubleValue>)Parameters["SuccessRatio"]; }
|
---|
80 | }
|
---|
81 | public LookupParameter<DoubleValue> SelectionPressureParameter {
|
---|
82 | get { return (LookupParameter<DoubleValue>)Parameters["SelectionPressure"]; }
|
---|
83 | }
|
---|
84 | public ValueLookupParameter<DoubleValue> MaximumSelectionPressureParameter {
|
---|
85 | get { return (ValueLookupParameter<DoubleValue>)Parameters["MaximumSelectionPressure"]; }
|
---|
86 | }
|
---|
87 | public ValueLookupParameter<BoolValue> OffspringSelectionBeforeMutationParameter {
|
---|
88 | get { return (ValueLookupParameter<BoolValue>)Parameters["OffspringSelectionBeforeMutation"]; }
|
---|
89 | }
|
---|
90 | public IValueLookupParameter<BoolValue> FillPopulationWithParentsParameter {
|
---|
91 | get { return (IValueLookupParameter<BoolValue>)Parameters["FillPopulationWithParents"]; }
|
---|
92 | }
|
---|
93 | #endregion
|
---|
94 |
|
---|
95 | [StorableConstructor]
|
---|
96 | private OffspringSelectionGeneticAlgorithmMainOperator(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
97 | private OffspringSelectionGeneticAlgorithmMainOperator(OffspringSelectionGeneticAlgorithmMainOperator original, Cloner cloner)
|
---|
98 | : base(original, cloner) {
|
---|
99 | }
|
---|
100 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
101 | return new OffspringSelectionGeneticAlgorithmMainOperator(this, cloner);
|
---|
102 | }
|
---|
103 | public OffspringSelectionGeneticAlgorithmMainOperator()
|
---|
104 | : base() {
|
---|
105 | Initialize();
|
---|
106 | }
|
---|
107 |
|
---|
108 | [StorableHook(HookType.AfterDeserialization)]
|
---|
109 | private void AfterDeserialization() {
|
---|
110 | // BackwardsCompatibility3.3
|
---|
111 | #region Backwards compatible code, remove with 3.4
|
---|
112 | if (!Parameters.ContainsKey("ReevaluateElites")) {
|
---|
113 | Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
|
---|
114 | }
|
---|
115 | if (!Parameters.ContainsKey("FillPopulationWithParents"))
|
---|
116 | Parameters.Add(new ValueLookupParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded."));
|
---|
117 | #endregion
|
---|
118 | }
|
---|
119 |
|
---|
120 | private void Initialize() {
|
---|
121 | #region Create parameters
|
---|
122 | Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
|
---|
123 | Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
|
---|
124 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
|
---|
125 | Parameters.Add(new ValueLookupParameter<IOperator>("Selector", "The operator used to select solutions for reproduction."));
|
---|
126 | Parameters.Add(new ValueLookupParameter<IOperator>("Crossover", "The operator used to cross solutions."));
|
---|
127 | Parameters.Add(new ValueLookupParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution."));
|
---|
128 | Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
|
---|
129 | Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
|
---|
130 | Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of evaluated solutions."));
|
---|
131 | Parameters.Add(new ValueLookupParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation."));
|
---|
132 | Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
|
---|
133 | Parameters.Add(new LookupParameter<DoubleValue>("ComparisonFactor", "The comparison factor is used to determine whether the offspring should be compared to the better parent, the worse parent or a quality value linearly interpolated between them. It is in the range [0;1]."));
|
---|
134 | Parameters.Add(new LookupParameter<DoubleValue>("CurrentSuccessRatio", "The current success ratio."));
|
---|
135 | Parameters.Add(new ValueLookupParameter<DoubleValue>("SuccessRatio", "The ratio of successful to total children that should be achieved."));
|
---|
136 | Parameters.Add(new LookupParameter<DoubleValue>("SelectionPressure", "The actual selection pressure."));
|
---|
137 | Parameters.Add(new ValueLookupParameter<DoubleValue>("MaximumSelectionPressure", "The maximum selection pressure that terminates the algorithm."));
|
---|
138 | Parameters.Add(new ValueLookupParameter<BoolValue>("OffspringSelectionBeforeMutation", "True if the offspring selection step should be applied before mutation, false if it should be applied after mutation."));
|
---|
139 | Parameters.Add(new ValueLookupParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded."));
|
---|
140 | #endregion
|
---|
141 |
|
---|
142 | #region Create operators
|
---|
143 | Placeholder selector = new Placeholder();
|
---|
144 | SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor();
|
---|
145 | ChildrenCreator childrenCreator = new ChildrenCreator();
|
---|
146 | ConditionalBranch osBeforeMutationBranch = new ConditionalBranch();
|
---|
147 | UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor();
|
---|
148 | Placeholder crossover1 = new Placeholder();
|
---|
149 | UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor();
|
---|
150 | Placeholder evaluator1 = new Placeholder();
|
---|
151 | SubScopesCounter subScopesCounter1 = new SubScopesCounter();
|
---|
152 | WeightedParentsQualityComparator qualityComparer1 = new WeightedParentsQualityComparator();
|
---|
153 | SubScopesRemover subScopesRemover1 = new SubScopesRemover();
|
---|
154 | UniformSubScopesProcessor uniformSubScopesProcessor3 = new UniformSubScopesProcessor();
|
---|
155 | StochasticBranch mutationBranch1 = new StochasticBranch();
|
---|
156 | Placeholder mutator1 = new Placeholder();
|
---|
157 | VariableCreator variableCreator1 = new VariableCreator();
|
---|
158 | VariableCreator variableCreator2 = new VariableCreator();
|
---|
159 | ConditionalSelector conditionalSelector = new ConditionalSelector();
|
---|
160 | SubScopesProcessor subScopesProcessor2 = new SubScopesProcessor();
|
---|
161 | UniformSubScopesProcessor uniformSubScopesProcessor4 = new UniformSubScopesProcessor();
|
---|
162 | Placeholder evaluator2 = new Placeholder();
|
---|
163 | SubScopesCounter subScopesCounter2 = new SubScopesCounter();
|
---|
164 | MergingReducer mergingReducer1 = new MergingReducer();
|
---|
165 | UniformSubScopesProcessor uniformSubScopesProcessor5 = new UniformSubScopesProcessor();
|
---|
166 | Placeholder crossover2 = new Placeholder();
|
---|
167 | StochasticBranch mutationBranch2 = new StochasticBranch();
|
---|
168 | Placeholder mutator2 = new Placeholder();
|
---|
169 | UniformSubScopesProcessor uniformSubScopesProcessor6 = new UniformSubScopesProcessor();
|
---|
170 | Placeholder evaluator3 = new Placeholder();
|
---|
171 | SubScopesCounter subScopesCounter3 = new SubScopesCounter();
|
---|
172 | WeightedParentsQualityComparator qualityComparer2 = new WeightedParentsQualityComparator();
|
---|
173 | SubScopesRemover subScopesRemover2 = new SubScopesRemover();
|
---|
174 | OffspringSelector offspringSelector = new OffspringSelector();
|
---|
175 | SubScopesProcessor subScopesProcessor3 = new SubScopesProcessor();
|
---|
176 | BestSelector bestSelector = new BestSelector();
|
---|
177 | WorstSelector worstSelector = new WorstSelector();
|
---|
178 | RightReducer rightReducer = new RightReducer();
|
---|
179 | LeftReducer leftReducer = new LeftReducer();
|
---|
180 | MergingReducer mergingReducer2 = new MergingReducer();
|
---|
181 | ConditionalBranch reevaluateElitesBranch = new ConditionalBranch();
|
---|
182 | UniformSubScopesProcessor uniformSubScopesProcessor7 = new UniformSubScopesProcessor();
|
---|
183 | Placeholder evaluator4 = new Placeholder();
|
---|
184 | SubScopesCounter subScopesCounter4 = new SubScopesCounter();
|
---|
185 |
|
---|
186 | selector.Name = "Selector (placeholder)";
|
---|
187 | selector.OperatorParameter.ActualName = SelectorParameter.Name;
|
---|
188 |
|
---|
189 | childrenCreator.ParentsPerChild = new IntValue(2);
|
---|
190 |
|
---|
191 | osBeforeMutationBranch.Name = "Apply OS before mutation?";
|
---|
192 | osBeforeMutationBranch.ConditionParameter.ActualName = OffspringSelectionBeforeMutationParameter.Name;
|
---|
193 |
|
---|
194 | crossover1.Name = "Crossover (placeholder)";
|
---|
195 | crossover1.OperatorParameter.ActualName = CrossoverParameter.Name;
|
---|
196 |
|
---|
197 | uniformSubScopesProcessor2.Parallel.Value = true;
|
---|
198 |
|
---|
199 | evaluator1.Name = "Evaluator (placeholder)";
|
---|
200 | evaluator1.OperatorParameter.ActualName = EvaluatorParameter.Name;
|
---|
201 |
|
---|
202 | subScopesCounter1.Name = "Increment EvaluatedSolutions";
|
---|
203 | subScopesCounter1.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
|
---|
204 |
|
---|
205 | qualityComparer1.ComparisonFactorParameter.ActualName = ComparisonFactorParameter.Name;
|
---|
206 | qualityComparer1.LeftSideParameter.ActualName = QualityParameter.Name;
|
---|
207 | qualityComparer1.MaximizationParameter.ActualName = MaximizationParameter.Name;
|
---|
208 | qualityComparer1.RightSideParameter.ActualName = QualityParameter.Name;
|
---|
209 | qualityComparer1.ResultParameter.ActualName = "SuccessfulOffspring";
|
---|
210 |
|
---|
211 | subScopesRemover1.RemoveAllSubScopes = true;
|
---|
212 |
|
---|
213 | mutationBranch1.ProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
|
---|
214 | mutationBranch1.RandomParameter.ActualName = RandomParameter.Name;
|
---|
215 |
|
---|
216 | mutator1.Name = "Mutator (placeholder)";
|
---|
217 | mutator1.OperatorParameter.ActualName = MutatorParameter.Name;
|
---|
218 |
|
---|
219 | variableCreator1.Name = "MutatedOffspring = true";
|
---|
220 | variableCreator1.CollectedValues.Add(new ValueParameter<BoolValue>("MutatedOffspring", null, new BoolValue(true), false));
|
---|
221 |
|
---|
222 | variableCreator2.Name = "MutatedOffspring = false";
|
---|
223 | variableCreator2.CollectedValues.Add(new ValueParameter<BoolValue>("MutatedOffspring", null, new BoolValue(false), false));
|
---|
224 |
|
---|
225 | conditionalSelector.ConditionParameter.ActualName = "MutatedOffspring";
|
---|
226 | conditionalSelector.ConditionParameter.Depth = 1;
|
---|
227 | conditionalSelector.CopySelected.Value = false;
|
---|
228 |
|
---|
229 | uniformSubScopesProcessor4.Parallel.Value = true;
|
---|
230 |
|
---|
231 | evaluator2.Name = "Evaluator (placeholder)";
|
---|
232 | evaluator2.OperatorParameter.ActualName = EvaluatorParameter.Name;
|
---|
233 |
|
---|
234 | subScopesCounter2.Name = "Increment EvaluatedSolutions";
|
---|
235 | subScopesCounter2.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
|
---|
236 |
|
---|
237 | crossover2.Name = "Crossover (placeholder)";
|
---|
238 | crossover2.OperatorParameter.ActualName = CrossoverParameter.Name;
|
---|
239 |
|
---|
240 | mutationBranch2.ProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
|
---|
241 | mutationBranch2.RandomParameter.ActualName = RandomParameter.Name;
|
---|
242 |
|
---|
243 | mutator2.Name = "Mutator (placeholder)";
|
---|
244 | mutator2.OperatorParameter.ActualName = MutatorParameter.Name;
|
---|
245 |
|
---|
246 | uniformSubScopesProcessor6.Parallel.Value = true;
|
---|
247 |
|
---|
248 | evaluator3.Name = "Evaluator (placeholder)";
|
---|
249 | evaluator3.OperatorParameter.ActualName = EvaluatorParameter.Name;
|
---|
250 |
|
---|
251 | subScopesCounter3.Name = "Increment EvaluatedSolutions";
|
---|
252 | subScopesCounter3.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
|
---|
253 |
|
---|
254 | qualityComparer2.ComparisonFactorParameter.ActualName = ComparisonFactorParameter.Name;
|
---|
255 | qualityComparer2.LeftSideParameter.ActualName = QualityParameter.Name;
|
---|
256 | qualityComparer2.MaximizationParameter.ActualName = MaximizationParameter.Name;
|
---|
257 | qualityComparer2.RightSideParameter.ActualName = QualityParameter.Name;
|
---|
258 | qualityComparer2.ResultParameter.ActualName = "SuccessfulOffspring";
|
---|
259 |
|
---|
260 | subScopesRemover2.RemoveAllSubScopes = true;
|
---|
261 |
|
---|
262 | offspringSelector.CurrentSuccessRatioParameter.ActualName = CurrentSuccessRatioParameter.Name;
|
---|
263 | offspringSelector.MaximumSelectionPressureParameter.ActualName = MaximumSelectionPressureParameter.Name;
|
---|
264 | offspringSelector.SelectionPressureParameter.ActualName = SelectionPressureParameter.Name;
|
---|
265 | offspringSelector.SuccessRatioParameter.ActualName = SuccessRatioParameter.Name;
|
---|
266 | offspringSelector.OffspringPopulationParameter.ActualName = "OffspringPopulation";
|
---|
267 | offspringSelector.OffspringPopulationWinnersParameter.ActualName = "OffspringPopulationWinners";
|
---|
268 | offspringSelector.SuccessfulOffspringParameter.ActualName = "SuccessfulOffspring";
|
---|
269 | offspringSelector.FillPopulationWithParentsParameter.ActualName = FillPopulationWithParentsParameter.Name;
|
---|
270 |
|
---|
271 | bestSelector.CopySelected = new BoolValue(false);
|
---|
272 | bestSelector.MaximizationParameter.ActualName = MaximizationParameter.Name;
|
---|
273 | bestSelector.NumberOfSelectedSubScopesParameter.ActualName = ElitesParameter.Name;
|
---|
274 | bestSelector.QualityParameter.ActualName = QualityParameter.Name;
|
---|
275 |
|
---|
276 | worstSelector.CopySelected = new BoolValue(false);
|
---|
277 | worstSelector.MaximizationParameter.ActualName = MaximizationParameter.Name;
|
---|
278 | worstSelector.NumberOfSelectedSubScopesParameter.ActualName = ElitesParameter.Name;
|
---|
279 | worstSelector.QualityParameter.ActualName = QualityParameter.Name;
|
---|
280 |
|
---|
281 | reevaluateElitesBranch.ConditionParameter.ActualName = "ReevaluateElites";
|
---|
282 | reevaluateElitesBranch.Name = "Reevaluate elites ?";
|
---|
283 |
|
---|
284 | uniformSubScopesProcessor7.Parallel.Value = true;
|
---|
285 |
|
---|
286 | evaluator4.Name = "Evaluator (placeholder)";
|
---|
287 | evaluator4.OperatorParameter.ActualName = EvaluatorParameter.Name;
|
---|
288 |
|
---|
289 | subScopesCounter4.Name = "Increment EvaluatedSolutions";
|
---|
290 | subScopesCounter4.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
|
---|
291 | #endregion
|
---|
292 |
|
---|
293 | #region Create operator graph
|
---|
294 | OperatorGraph.InitialOperator = selector;
|
---|
295 | selector.Successor = subScopesProcessor1;
|
---|
296 | subScopesProcessor1.Operators.Add(new EmptyOperator());
|
---|
297 | subScopesProcessor1.Operators.Add(childrenCreator);
|
---|
298 | subScopesProcessor1.Successor = offspringSelector;
|
---|
299 | childrenCreator.Successor = osBeforeMutationBranch;
|
---|
300 | osBeforeMutationBranch.TrueBranch = uniformSubScopesProcessor1;
|
---|
301 | osBeforeMutationBranch.FalseBranch = uniformSubScopesProcessor5;
|
---|
302 | osBeforeMutationBranch.Successor = null;
|
---|
303 | uniformSubScopesProcessor1.Operator = crossover1;
|
---|
304 | uniformSubScopesProcessor1.Successor = uniformSubScopesProcessor2;
|
---|
305 | crossover1.Successor = null;
|
---|
306 | uniformSubScopesProcessor2.Operator = evaluator1;
|
---|
307 | uniformSubScopesProcessor2.Successor = subScopesCounter1;
|
---|
308 | evaluator1.Successor = qualityComparer1;
|
---|
309 | qualityComparer1.Successor = subScopesRemover1;
|
---|
310 | subScopesRemover1.Successor = null;
|
---|
311 | subScopesCounter1.Successor = uniformSubScopesProcessor3;
|
---|
312 | uniformSubScopesProcessor3.Operator = mutationBranch1;
|
---|
313 | uniformSubScopesProcessor3.Successor = conditionalSelector;
|
---|
314 | mutationBranch1.FirstBranch = mutator1;
|
---|
315 | mutationBranch1.SecondBranch = variableCreator2;
|
---|
316 | mutationBranch1.Successor = null;
|
---|
317 | mutator1.Successor = variableCreator1;
|
---|
318 | variableCreator1.Successor = null;
|
---|
319 | variableCreator2.Successor = null;
|
---|
320 | conditionalSelector.Successor = subScopesProcessor2;
|
---|
321 | subScopesProcessor2.Operators.Add(new EmptyOperator());
|
---|
322 | subScopesProcessor2.Operators.Add(uniformSubScopesProcessor4);
|
---|
323 | subScopesProcessor2.Successor = mergingReducer1;
|
---|
324 | uniformSubScopesProcessor4.Operator = evaluator2;
|
---|
325 | uniformSubScopesProcessor4.Successor = subScopesCounter2;
|
---|
326 | evaluator2.Successor = null;
|
---|
327 | subScopesCounter2.Successor = null;
|
---|
328 | mergingReducer1.Successor = null;
|
---|
329 | uniformSubScopesProcessor5.Operator = crossover2;
|
---|
330 | uniformSubScopesProcessor5.Successor = uniformSubScopesProcessor6;
|
---|
331 | crossover2.Successor = mutationBranch2;
|
---|
332 | mutationBranch2.FirstBranch = mutator2;
|
---|
333 | mutationBranch2.SecondBranch = null;
|
---|
334 | mutationBranch2.Successor = null;
|
---|
335 | mutator2.Successor = null;
|
---|
336 | uniformSubScopesProcessor6.Operator = evaluator3;
|
---|
337 | uniformSubScopesProcessor6.Successor = subScopesCounter3;
|
---|
338 | evaluator3.Successor = qualityComparer2;
|
---|
339 | qualityComparer2.Successor = subScopesRemover2;
|
---|
340 | subScopesRemover2.Successor = null;
|
---|
341 | subScopesCounter3.Successor = null;
|
---|
342 | offspringSelector.OffspringCreator = selector;
|
---|
343 | offspringSelector.Successor = subScopesProcessor3;
|
---|
344 | subScopesProcessor3.Operators.Add(bestSelector);
|
---|
345 | subScopesProcessor3.Operators.Add(worstSelector);
|
---|
346 | subScopesProcessor3.Successor = mergingReducer2;
|
---|
347 | bestSelector.Successor = rightReducer;
|
---|
348 | rightReducer.Successor = reevaluateElitesBranch;
|
---|
349 | reevaluateElitesBranch.TrueBranch = uniformSubScopesProcessor7;
|
---|
350 | uniformSubScopesProcessor7.Operator = evaluator4;
|
---|
351 | uniformSubScopesProcessor7.Successor = subScopesCounter4;
|
---|
352 | subScopesCounter4.Successor = null;
|
---|
353 | reevaluateElitesBranch.FalseBranch = null;
|
---|
354 | reevaluateElitesBranch.Successor = null;
|
---|
355 | worstSelector.Successor = leftReducer;
|
---|
356 | leftReducer.Successor = null;
|
---|
357 | mergingReducer2.Successor = null;
|
---|
358 | #endregion
|
---|
359 | }
|
---|
360 |
|
---|
361 | public override IOperation Apply() {
|
---|
362 | if (CrossoverParameter.ActualValue == null)
|
---|
363 | return null;
|
---|
364 | return base.Apply();
|
---|
365 | }
|
---|
366 | }
|
---|
367 | }
|
---|