1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Common;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
26 | using HeuristicLab.Operators;
|
---|
27 | using HeuristicLab.Parameters;
|
---|
28 | using HeuristicLab.Persistence;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
32 | [Item("NcaInitializer", "Base class for initializers for NCA.")]
|
---|
33 | [StorableType("362eedbd-cabb-44b1-8c4d-3624d14c4fff")]
|
---|
34 | public abstract class NcaInitializer : SingleSuccessorOperator, INcaInitializer {
|
---|
35 |
|
---|
36 | public ILookupParameter<IClassificationProblemData> ProblemDataParameter {
|
---|
37 | get { return (ILookupParameter<IClassificationProblemData>)Parameters["ProblemData"]; }
|
---|
38 | }
|
---|
39 | public ILookupParameter<IntValue> DimensionsParameter {
|
---|
40 | get { return (ILookupParameter<IntValue>)Parameters["Dimensions"]; }
|
---|
41 | }
|
---|
42 | public ILookupParameter<RealVector> NcaMatrixParameter {
|
---|
43 | get { return (ILookupParameter<RealVector>)Parameters["NcaMatrix"]; }
|
---|
44 | }
|
---|
45 |
|
---|
46 | [StorableConstructor]
|
---|
47 | protected NcaInitializer(bool deserializing) : base(deserializing) { }
|
---|
48 | protected NcaInitializer(NcaInitializer original, Cloner cloner) : base(original, cloner) { }
|
---|
49 | public NcaInitializer() {
|
---|
50 | Parameters.Add(new LookupParameter<IClassificationProblemData>("ProblemData", "The classification problem data."));
|
---|
51 | Parameters.Add(new LookupParameter<IntValue>("Dimensions", "The number of dimensions to which the features should be pruned."));
|
---|
52 | Parameters.Add(new LookupParameter<RealVector>("NcaMatrix", "The coefficients of the matrix that need to be optimized. Note that the matrix is flattened."));
|
---|
53 | }
|
---|
54 |
|
---|
55 | public override IOperation Apply() {
|
---|
56 | var problemData = ProblemDataParameter.ActualValue;
|
---|
57 |
|
---|
58 | var dimensions = DimensionsParameter.ActualValue.Value;
|
---|
59 | var matrix = Initialize(problemData, dimensions);
|
---|
60 | var attributes = matrix.GetLength(0);
|
---|
61 |
|
---|
62 | var result = new double[attributes * dimensions];
|
---|
63 | for (int i = 0; i < attributes; i++)
|
---|
64 | for (int j = 0; j < dimensions; j++)
|
---|
65 | result[i * dimensions + j] = matrix[i, j];
|
---|
66 |
|
---|
67 | NcaMatrixParameter.ActualValue = new RealVector(result);
|
---|
68 | return base.Apply();
|
---|
69 | }
|
---|
70 |
|
---|
71 | public abstract double[,] Initialize(IClassificationProblemData data, int dimensions);
|
---|
72 | }
|
---|
73 | }
|
---|