[14386] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Linq;
|
---|
[14872] | 24 | using System.Threading;
|
---|
[14386] | 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Optimization;
|
---|
| 29 | using HeuristicLab.Parameters;
|
---|
[14927] | 30 | using HeuristicLab.Persistence;
|
---|
[14386] | 31 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 32 |
|
---|
[14887] | 33 | namespace HeuristicLab.Algorithms.DataAnalysis.KernelRidgeRegression {
|
---|
| 34 | [Item("Kernel Ridge Regression", "Kernelized ridge regression e.g. for radial basis function (RBF) regression.")]
|
---|
[14386] | 35 | [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 100)]
|
---|
[14927] | 36 | [StorableType("ea532dbe-1c68-4fd8-84f2-0f2ca8a8cd27")]
|
---|
[14887] | 37 | public sealed class KernelRidgeRegression : BasicAlgorithm {
|
---|
| 38 | private const string SolutionResultName = "Kernel ridge regression solution";
|
---|
[14386] | 39 |
|
---|
[14872] | 40 | public override bool SupportsPause {
|
---|
| 41 | get { return false; }
|
---|
| 42 | }
|
---|
| 43 | public override Type ProblemType {
|
---|
| 44 | get { return typeof(IRegressionProblem); }
|
---|
| 45 | }
|
---|
| 46 | public new IRegressionProblem Problem {
|
---|
| 47 | get { return (IRegressionProblem)base.Problem; }
|
---|
| 48 | set { base.Problem = value; }
|
---|
| 49 | }
|
---|
[14386] | 50 |
|
---|
[14872] | 51 | #region parameter names
|
---|
| 52 | private const string KernelParameterName = "Kernel";
|
---|
| 53 | private const string ScaleInputVariablesParameterName = "ScaleInputVariables";
|
---|
[14887] | 54 | private const string LambdaParameterName = "LogLambda";
|
---|
| 55 | private const string BetaParameterName = "Beta";
|
---|
[14386] | 56 | #endregion
|
---|
| 57 |
|
---|
[14872] | 58 | #region parameter properties
|
---|
[14887] | 59 | public ValueParameter<IKernel> KernelParameter {
|
---|
| 60 | get { return (ValueParameter<IKernel>)Parameters[KernelParameterName]; }
|
---|
[14386] | 61 | }
|
---|
[14872] | 62 |
|
---|
| 63 | public IFixedValueParameter<BoolValue> ScaleInputVariablesParameter {
|
---|
| 64 | get { return (IFixedValueParameter<BoolValue>)Parameters[ScaleInputVariablesParameterName]; }
|
---|
| 65 | }
|
---|
[14887] | 66 |
|
---|
| 67 | public IFixedValueParameter<DoubleValue> LogLambdaParameter {
|
---|
| 68 | get { return (IFixedValueParameter<DoubleValue>)Parameters[LambdaParameterName]; }
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | public IFixedValueParameter<DoubleValue> BetaParameter {
|
---|
| 72 | get { return (IFixedValueParameter<DoubleValue>)Parameters[BetaParameterName]; }
|
---|
| 73 | }
|
---|
[14386] | 74 | #endregion
|
---|
| 75 |
|
---|
[14872] | 76 | #region properties
|
---|
[14887] | 77 | public IKernel Kernel {
|
---|
[14386] | 78 | get { return KernelParameter.Value; }
|
---|
| 79 | }
|
---|
| 80 |
|
---|
[14872] | 81 | public bool ScaleInputVariables {
|
---|
| 82 | get { return ScaleInputVariablesParameter.Value.Value; }
|
---|
| 83 | set { ScaleInputVariablesParameter.Value.Value = value; }
|
---|
| 84 | }
|
---|
| 85 |
|
---|
[14887] | 86 | public double LogLambda {
|
---|
| 87 | get { return LogLambdaParameter.Value.Value; }
|
---|
| 88 | set { LogLambdaParameter.Value.Value = value; }
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 | public double Beta {
|
---|
| 92 | get { return BetaParameter.Value.Value; }
|
---|
| 93 | set { BetaParameter.Value.Value = value; }
|
---|
| 94 | }
|
---|
[14386] | 95 | #endregion
|
---|
| 96 |
|
---|
| 97 | [StorableConstructor]
|
---|
[15018] | 98 | private KernelRidgeRegression(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
[14887] | 99 | private KernelRidgeRegression(KernelRidgeRegression original, Cloner cloner)
|
---|
[14386] | 100 | : base(original, cloner) {
|
---|
| 101 | }
|
---|
[14887] | 102 | public KernelRidgeRegression() {
|
---|
[14386] | 103 | Problem = new RegressionProblem();
|
---|
[14887] | 104 | Parameters.Add(new ValueParameter<IKernel>(KernelParameterName, "The kernel", new GaussianKernel()));
|
---|
[14872] | 105 | Parameters.Add(new FixedValueParameter<BoolValue>(ScaleInputVariablesParameterName, "Set to true if the input variables should be scaled to the interval [0..1]", new BoolValue(true)));
|
---|
[14887] | 106 | Parameters.Add(new FixedValueParameter<DoubleValue>(LambdaParameterName, "The log10-transformed weight for the regularization term lambda [-inf..+inf]. Small values produce more complex models, large values produce models with larger errors. Set to very small value (e.g. -1.0e15) for almost exact approximation", new DoubleValue(-2)));
|
---|
| 107 | Parameters.Add(new FixedValueParameter<DoubleValue>(BetaParameterName, "The beta parameter for the kernel", new DoubleValue(2)));
|
---|
[14386] | 108 | }
|
---|
| 109 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 110 | private void AfterDeserialization() { }
|
---|
| 111 |
|
---|
| 112 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[14887] | 113 | return new KernelRidgeRegression(this, cloner);
|
---|
[14386] | 114 | }
|
---|
| 115 |
|
---|
[14872] | 116 | protected override void Run(CancellationToken cancellationToken) {
|
---|
[14888] | 117 | double rmsError, looCvRMSE;
|
---|
[14887] | 118 | var kernel = Kernel;
|
---|
| 119 | kernel.Beta = Beta;
|
---|
[14888] | 120 | var solution = CreateRadialBasisRegressionSolution(Problem.ProblemData, kernel, Math.Pow(10, LogLambda), ScaleInputVariables, out rmsError, out looCvRMSE);
|
---|
[14887] | 121 | Results.Add(new Result(SolutionResultName, "The kernel ridge regression solution.", solution));
|
---|
[14872] | 122 | Results.Add(new Result("RMSE (test)", "The root mean squared error of the solution on the test set.", new DoubleValue(rmsError)));
|
---|
[14888] | 123 | Results.Add(new Result("RMSE (LOO-CV)", "The leave-one-out-cross-validation root mean squared error", new DoubleValue(looCvRMSE)));
|
---|
[14386] | 124 | }
|
---|
| 125 |
|
---|
[14888] | 126 | public static IRegressionSolution CreateRadialBasisRegressionSolution(IRegressionProblemData problemData, ICovarianceFunction kernel, double lambda, bool scaleInputs, out double rmsError, out double looCvRMSE) {
|
---|
[14887] | 127 | var model = new KernelRidgeRegressionModel(problemData.Dataset, problemData.TargetVariable, problemData.AllowedInputVariables, problemData.TrainingIndices, scaleInputs, kernel, lambda);
|
---|
| 128 | rmsError = double.NaN;
|
---|
| 129 | if (problemData.TestIndices.Any()) {
|
---|
| 130 | rmsError = Math.Sqrt(model.GetEstimatedValues(problemData.Dataset, problemData.TestIndices)
|
---|
| 131 | .Zip(problemData.TargetVariableTestValues, (a, b) => (a - b) * (a - b))
|
---|
| 132 | .Average());
|
---|
| 133 | }
|
---|
[14872] | 134 | var solution = model.CreateRegressionSolution((IRegressionProblemData)problemData.Clone());
|
---|
[14887] | 135 | solution.Model.Name = "Kernel ridge regression model";
|
---|
| 136 | solution.Name = SolutionResultName;
|
---|
[14888] | 137 | looCvRMSE = model.LooCvRMSE;
|
---|
[14386] | 138 | return solution;
|
---|
| 139 | }
|
---|
| 140 | }
|
---|
| 141 | }
|
---|