[12868] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[14185] | 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[12868] | 4 | * and the BEACON Center for the Study of Evolution in Action.
|
---|
| 5 | *
|
---|
| 6 | * This file is part of HeuristicLab.
|
---|
| 7 | *
|
---|
| 8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 9 | * it under the terms of the GNU General Public License as published by
|
---|
| 10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 11 | * (at your option) any later version.
|
---|
| 12 | *
|
---|
| 13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | * GNU General Public License for more details.
|
---|
| 17 | *
|
---|
| 18 | * You should have received a copy of the GNU General Public License
|
---|
| 19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 20 | */
|
---|
| 21 | #endregion
|
---|
| 22 |
|
---|
[14315] | 23 | using System;
|
---|
[12868] | 24 | using System.Collections.Generic;
|
---|
[14315] | 25 | using System.Diagnostics.Eventing.Reader;
|
---|
[13921] | 26 | using System.Linq;
|
---|
[12868] | 27 | using HeuristicLab.Common;
|
---|
| 28 | using HeuristicLab.Core;
|
---|
[14927] | 29 | using HeuristicLab.Persistence;
|
---|
[12868] | 30 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[14927] | 33 | [StorableType("4d807e5e-3504-4e49-a3e7-03833144bbc6")]
|
---|
[12868] | 34 | // this class is used as a surrogate for persistence of an actual GBT model
|
---|
| 35 | // since the actual GBT model would be very large when persisted we only store all necessary information to
|
---|
| 36 | // recalculate the actual GBT model on demand
|
---|
| 37 | [Item("Gradient boosted tree model", "")]
|
---|
[13941] | 38 | public sealed class GradientBoostedTreesModelSurrogate : RegressionModel, IGradientBoostedTreesModel {
|
---|
[12868] | 39 | // don't store the actual model!
|
---|
[14315] | 40 | // the actual model is only recalculated when necessary
|
---|
| 41 | private readonly Lazy<IGradientBoostedTreesModel> actualModel;
|
---|
| 42 | private IGradientBoostedTreesModel ActualModel {
|
---|
| 43 | get { return actualModel.Value; }
|
---|
| 44 | }
|
---|
[12868] | 45 |
|
---|
| 46 | [Storable]
|
---|
| 47 | private readonly IRegressionProblemData trainingProblemData;
|
---|
| 48 | [Storable]
|
---|
| 49 | private readonly uint seed;
|
---|
| 50 | [Storable]
|
---|
[12873] | 51 | private ILossFunction lossFunction;
|
---|
[12868] | 52 | [Storable]
|
---|
| 53 | private double r;
|
---|
| 54 | [Storable]
|
---|
| 55 | private double m;
|
---|
| 56 | [Storable]
|
---|
| 57 | private double nu;
|
---|
| 58 | [Storable]
|
---|
| 59 | private int iterations;
|
---|
| 60 | [Storable]
|
---|
| 61 | private int maxSize;
|
---|
| 62 |
|
---|
| 63 |
|
---|
[13941] | 64 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
[14315] | 65 | get {
|
---|
| 66 | return ActualModel.Models.SelectMany(x => x.VariablesUsedForPrediction).Distinct().OrderBy(x => x);
|
---|
[14236] | 67 | }
|
---|
[13921] | 68 | }
|
---|
| 69 |
|
---|
[12868] | 70 | [StorableConstructor]
|
---|
[14315] | 71 | private GradientBoostedTreesModelSurrogate(bool deserializing)
|
---|
| 72 | : base(deserializing) {
|
---|
| 73 | actualModel = new Lazy<IGradientBoostedTreesModel>(() => RecalculateModel());
|
---|
| 74 | }
|
---|
[12868] | 75 |
|
---|
| 76 | private GradientBoostedTreesModelSurrogate(GradientBoostedTreesModelSurrogate original, Cloner cloner)
|
---|
| 77 | : base(original, cloner) {
|
---|
[14315] | 78 | IGradientBoostedTreesModel clonedModel = null;
|
---|
| 79 | if (original.ActualModel != null) clonedModel = cloner.Clone(original.ActualModel);
|
---|
| 80 | actualModel = new Lazy<IGradientBoostedTreesModel>(CreateLazyInitFunc(clonedModel)); // only capture clonedModel in the closure
|
---|
[12868] | 81 |
|
---|
| 82 | this.trainingProblemData = cloner.Clone(original.trainingProblemData);
|
---|
[12873] | 83 | this.lossFunction = cloner.Clone(original.lossFunction);
|
---|
[12868] | 84 | this.seed = original.seed;
|
---|
| 85 | this.iterations = original.iterations;
|
---|
| 86 | this.maxSize = original.maxSize;
|
---|
| 87 | this.r = original.r;
|
---|
| 88 | this.m = original.m;
|
---|
| 89 | this.nu = original.nu;
|
---|
| 90 | }
|
---|
| 91 |
|
---|
[14315] | 92 | private Func<IGradientBoostedTreesModel> CreateLazyInitFunc(IGradientBoostedTreesModel clonedModel) {
|
---|
| 93 | return () => {
|
---|
| 94 | return clonedModel == null ? RecalculateModel() : clonedModel;
|
---|
| 95 | };
|
---|
| 96 | }
|
---|
| 97 |
|
---|
[12868] | 98 | // create only the surrogate model without an actual model
|
---|
[13921] | 99 | public GradientBoostedTreesModelSurrogate(IRegressionProblemData trainingProblemData, uint seed,
|
---|
| 100 | ILossFunction lossFunction, int iterations, int maxSize, double r, double m, double nu)
|
---|
[13941] | 101 | : base(trainingProblemData.TargetVariable, "Gradient boosted tree model", string.Empty) {
|
---|
[12868] | 102 | this.trainingProblemData = trainingProblemData;
|
---|
| 103 | this.seed = seed;
|
---|
[12873] | 104 | this.lossFunction = lossFunction;
|
---|
[12868] | 105 | this.iterations = iterations;
|
---|
| 106 | this.maxSize = maxSize;
|
---|
| 107 | this.r = r;
|
---|
| 108 | this.m = m;
|
---|
| 109 | this.nu = nu;
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | // wrap an actual model in a surrograte
|
---|
[13921] | 113 | public GradientBoostedTreesModelSurrogate(IRegressionProblemData trainingProblemData, uint seed,
|
---|
| 114 | ILossFunction lossFunction, int iterations, int maxSize, double r, double m, double nu,
|
---|
| 115 | IGradientBoostedTreesModel model)
|
---|
[12873] | 116 | : this(trainingProblemData, seed, lossFunction, iterations, maxSize, r, m, nu) {
|
---|
[14315] | 117 | actualModel = new Lazy<IGradientBoostedTreesModel>(() => model);
|
---|
[12868] | 118 | }
|
---|
| 119 |
|
---|
| 120 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 121 | return new GradientBoostedTreesModelSurrogate(this, cloner);
|
---|
| 122 | }
|
---|
| 123 |
|
---|
| 124 | // forward message to actual model (recalculate model first if necessary)
|
---|
[13941] | 125 | public override IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[14315] | 126 | return ActualModel.GetEstimatedValues(dataset, rows);
|
---|
[12868] | 127 | }
|
---|
| 128 |
|
---|
[13941] | 129 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
[12868] | 130 | return new RegressionSolution(this, (IRegressionProblemData)problemData.Clone());
|
---|
| 131 | }
|
---|
| 132 |
|
---|
[13157] | 133 | private IGradientBoostedTreesModel RecalculateModel() {
|
---|
[12868] | 134 | return GradientBoostedTreesAlgorithmStatic.TrainGbm(trainingProblemData, lossFunction, maxSize, nu, r, m, iterations, seed).Model;
|
---|
| 135 | }
|
---|
[13157] | 136 |
|
---|
| 137 | public IEnumerable<IRegressionModel> Models {
|
---|
| 138 | get {
|
---|
[14315] | 139 | return ActualModel.Models;
|
---|
[13157] | 140 | }
|
---|
| 141 | }
|
---|
| 142 |
|
---|
| 143 | public IEnumerable<double> Weights {
|
---|
| 144 | get {
|
---|
[14315] | 145 | return ActualModel.Weights;
|
---|
[13157] | 146 | }
|
---|
| 147 | }
|
---|
[12868] | 148 | }
|
---|
| 149 | }
|
---|