1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Common;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
26 | using HeuristicLab.Operators;
|
---|
27 | using HeuristicLab.Optimization;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence;
|
---|
30 | using System;
|
---|
31 | using System.Linq;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Algorithms.CMAEvolutionStrategy {
|
---|
34 | [Item("CMAUpdater", "Updates the covariance matrix and strategy parameters of CMA-ES.")]
|
---|
35 | [StorableType("549ad6cd-5244-4ebe-a9be-75a0528c8561")]
|
---|
36 | public class CMAUpdater : SingleSuccessorOperator, ICMAUpdater, IIterationBasedOperator, ISingleObjectiveOperator {
|
---|
37 |
|
---|
38 | public Type CMAType {
|
---|
39 | get { return typeof(CMAParameters); }
|
---|
40 | }
|
---|
41 |
|
---|
42 | #region Parameter Properties
|
---|
43 | public ILookupParameter<CMAParameters> StrategyParametersParameter {
|
---|
44 | get { return (ILookupParameter<CMAParameters>)Parameters["StrategyParameters"]; }
|
---|
45 | }
|
---|
46 |
|
---|
47 | public ILookupParameter<RealVector> MeanParameter {
|
---|
48 | get { return (ILookupParameter<RealVector>)Parameters["Mean"]; }
|
---|
49 | }
|
---|
50 |
|
---|
51 | public ILookupParameter<RealVector> OldMeanParameter {
|
---|
52 | get { return (ILookupParameter<RealVector>)Parameters["OldMean"]; }
|
---|
53 | }
|
---|
54 |
|
---|
55 | public IScopeTreeLookupParameter<RealVector> OffspringParameter {
|
---|
56 | get { return (IScopeTreeLookupParameter<RealVector>)Parameters["Offspring"]; }
|
---|
57 | }
|
---|
58 |
|
---|
59 | public IScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
60 | get { return (IScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
61 | }
|
---|
62 |
|
---|
63 | public ILookupParameter<IntValue> IterationsParameter {
|
---|
64 | get { return (ILookupParameter<IntValue>)Parameters["Iterations"]; }
|
---|
65 | }
|
---|
66 |
|
---|
67 | public IValueLookupParameter<IntValue> MaximumIterationsParameter {
|
---|
68 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumIterations"]; }
|
---|
69 | }
|
---|
70 |
|
---|
71 | public IValueLookupParameter<IntValue> MaximumEvaluatedSolutionsParameter {
|
---|
72 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumEvaluatedSolutions"]; }
|
---|
73 | }
|
---|
74 |
|
---|
75 | public ILookupParameter<BoolValue> DegenerateStateParameter {
|
---|
76 | get { return (ILookupParameter<BoolValue>)Parameters["DegenerateState"]; }
|
---|
77 | }
|
---|
78 | #endregion
|
---|
79 |
|
---|
80 | [StorableConstructor]
|
---|
81 | protected CMAUpdater(StorableConstructorFlag deserializing) : base(deserializing) { }
|
---|
82 | protected CMAUpdater(CMAUpdater original, Cloner cloner) : base(original, cloner) { }
|
---|
83 | public CMAUpdater()
|
---|
84 | : base() {
|
---|
85 | Parameters.Add(new LookupParameter<CMAParameters>("StrategyParameters", "The strategy parameters of CMA-ES."));
|
---|
86 | Parameters.Add(new LookupParameter<RealVector>("Mean", "The new mean."));
|
---|
87 | Parameters.Add(new LookupParameter<RealVector>("OldMean", "The old mean."));
|
---|
88 | Parameters.Add(new ScopeTreeLookupParameter<RealVector>("Offspring", "The created offspring solutions."));
|
---|
89 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The quality of the offspring."));
|
---|
90 | Parameters.Add(new LookupParameter<IntValue>("Iterations", "The number of iterations passed."));
|
---|
91 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumIterations", "The maximum number of iterations."));
|
---|
92 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumEvaluatedSolutions", "The maximum number of evaluated solutions."));
|
---|
93 | Parameters.Add(new LookupParameter<BoolValue>("DegenerateState", "Whether the algorithm state has degenerated and should be terminated."));
|
---|
94 | MeanParameter.ActualName = "XMean";
|
---|
95 | OldMeanParameter.ActualName = "XOld";
|
---|
96 | OffspringParameter.ActualName = "RealVector";
|
---|
97 | }
|
---|
98 |
|
---|
99 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
100 | return new CMAUpdater(this, cloner);
|
---|
101 | }
|
---|
102 |
|
---|
103 | public override IOperation Apply() {
|
---|
104 | var iterations = IterationsParameter.ActualValue.Value;
|
---|
105 |
|
---|
106 | var xold = OldMeanParameter.ActualValue;
|
---|
107 | var xmean = MeanParameter.ActualValue;
|
---|
108 | var offspring = OffspringParameter.ActualValue;
|
---|
109 | var quality = QualityParameter.ActualValue;
|
---|
110 | var lambda = offspring.Length;
|
---|
111 |
|
---|
112 | var N = xmean.Length;
|
---|
113 | var sp = StrategyParametersParameter.ActualValue;
|
---|
114 |
|
---|
115 | #region Initialize default values for strategy parameter adjustment
|
---|
116 | if (sp.ChiN == 0) sp.ChiN = Math.Sqrt(N) * (1.0 - 1.0 / (4.0 * N) + 1.0 / (21.0 * N * N));
|
---|
117 | if (sp.MuEff == 0) sp.MuEff = sp.Weights.Sum() * sp.Weights.Sum() / sp.Weights.Sum(x => x * x);
|
---|
118 | if (sp.CS == 0) sp.CS = (sp.MuEff + 2) / (N + sp.MuEff + 3);
|
---|
119 | if (sp.Damps == 0) {
|
---|
120 | var maxIterations = MaximumIterationsParameter.ActualValue.Value;
|
---|
121 | var maxEvals = MaximumEvaluatedSolutionsParameter.ActualValue.Value;
|
---|
122 | sp.Damps = 2 * Math.Max(0, Math.Sqrt((sp.MuEff - 1) / (N + 1)) - 1)
|
---|
123 | * Math.Max(0.3, 1 - N / (1e-6 + Math.Min(maxIterations, maxEvals / lambda))) + sp.CS + 1;
|
---|
124 | }
|
---|
125 | if (sp.CC == 0) sp.CC = 4.0 / (N + 4);
|
---|
126 | if (sp.MuCov == 0) sp.MuCov = sp.MuEff;
|
---|
127 | if (sp.CCov == 0) sp.CCov = 2.0 / ((N + 1.41) * (N + 1.41) * sp.MuCov)
|
---|
128 | + (1 - (1.0 / sp.MuCov)) * Math.Min(1, (2 * sp.MuEff - 1) / (sp.MuEff + (N + 2) * (N + 2)));
|
---|
129 | if (sp.CCovSep == 0) sp.CCovSep = Math.Min(1, sp.CCov * (N + 1.5) / 3);
|
---|
130 | #endregion
|
---|
131 |
|
---|
132 | sp.QualityHistory.Enqueue(quality[0].Value);
|
---|
133 | while (sp.QualityHistory.Count > sp.QualityHistorySize && sp.QualityHistorySize >= 0)
|
---|
134 | sp.QualityHistory.Dequeue();
|
---|
135 |
|
---|
136 | for (int i = 0; i < N; i++) {
|
---|
137 | sp.BDz[i] = Math.Sqrt(sp.MuEff) * (xmean[i] - xold[i]) / sp.Sigma;
|
---|
138 | }
|
---|
139 |
|
---|
140 | if (sp.InitialIterations >= iterations) {
|
---|
141 | for (int i = 0; i < N; i++) {
|
---|
142 | sp.PS[i] = (1 - sp.CS) * sp.PS[i]
|
---|
143 | + Math.Sqrt(sp.CS * (2 - sp.CS)) * sp.BDz[i] / sp.D[i];
|
---|
144 | }
|
---|
145 | } else {
|
---|
146 | var artmp = new double[N];
|
---|
147 | for (int i = 0; i < N; i++) {
|
---|
148 | var sum = 0.0;
|
---|
149 | for (int j = 0; j < N; j++) {
|
---|
150 | sum += sp.B[j, i] * sp.BDz[j];
|
---|
151 | }
|
---|
152 | artmp[i] = sum / sp.D[i];
|
---|
153 | }
|
---|
154 | for (int i = 0; i < N; i++) {
|
---|
155 | var sum = 0.0;
|
---|
156 | for (int j = 0; j < N; j++) {
|
---|
157 | sum += sp.B[i, j] * artmp[j];
|
---|
158 | }
|
---|
159 | sp.PS[i] = (1 - sp.CS) * sp.PS[i] + Math.Sqrt(sp.CS * (2 - sp.CS)) * sum;
|
---|
160 | }
|
---|
161 | }
|
---|
162 | var normPS = Math.Sqrt(sp.PS.Select(x => x * x).Sum());
|
---|
163 | var hsig = normPS / Math.Sqrt(1 - Math.Pow(1 - sp.CS, 2 * iterations)) / sp.ChiN < 1.4 + 2.0 / (N + 1) ? 1.0 : 0.0;
|
---|
164 | for (int i = 0; i < sp.PC.Length; i++) {
|
---|
165 | sp.PC[i] = (1 - sp.CC) * sp.PC[i]
|
---|
166 | + hsig * Math.Sqrt(sp.CC * (2 - sp.CC)) * sp.BDz[i];
|
---|
167 | }
|
---|
168 |
|
---|
169 | if (sp.CCov > 0) {
|
---|
170 | if (sp.InitialIterations >= iterations) {
|
---|
171 | for (int i = 0; i < N; i++) {
|
---|
172 | sp.C[i, i] = (1 - sp.CCovSep) * sp.C[i, i]
|
---|
173 | + sp.CCov * (1 / sp.MuCov)
|
---|
174 | * (sp.PC[i] * sp.PC[i] + (1 - hsig) * sp.CC * (2 - sp.CC) * sp.C[i, i]);
|
---|
175 | for (int k = 0; k < sp.Mu; k++) {
|
---|
176 | sp.C[i, i] += sp.CCov * (1 - 1 / sp.MuCov) * sp.Weights[k] * (offspring[k][i] - xold[i]) *
|
---|
177 | (offspring[k][i] - xold[i]) / (sp.Sigma * sp.Sigma);
|
---|
178 | }
|
---|
179 | }
|
---|
180 | } else {
|
---|
181 | for (int i = 0; i < N; i++) {
|
---|
182 | for (int j = 0; j < N; j++) {
|
---|
183 | sp.C[i, j] = (1 - sp.CCov) * sp.C[i, j]
|
---|
184 | + sp.CCov * (1 / sp.MuCov)
|
---|
185 | * (sp.PC[i] * sp.PC[j] + (1 - hsig) * sp.CC * (2 - sp.CC) * sp.C[i, j]);
|
---|
186 | for (int k = 0; k < sp.Mu; k++) {
|
---|
187 | sp.C[i, j] += sp.CCov * (1 - 1 / sp.MuCov) * sp.Weights[k] * (offspring[k][i] - xold[i]) *
|
---|
188 | (offspring[k][j] - xold[j]) / (sp.Sigma * sp.Sigma);
|
---|
189 | }
|
---|
190 | }
|
---|
191 | }
|
---|
192 | }
|
---|
193 | }
|
---|
194 | sp.Sigma *= Math.Exp((sp.CS / sp.Damps) * (normPS / sp.ChiN - 1));
|
---|
195 |
|
---|
196 | double minSqrtdiagC = int.MaxValue, maxSqrtdiagC = int.MinValue;
|
---|
197 | for (int i = 0; i < N; i++) {
|
---|
198 | if (Math.Sqrt(sp.C[i, i]) < minSqrtdiagC) minSqrtdiagC = Math.Sqrt(sp.C[i, i]);
|
---|
199 | if (Math.Sqrt(sp.C[i, i]) > maxSqrtdiagC) maxSqrtdiagC = Math.Sqrt(sp.C[i, i]);
|
---|
200 | }
|
---|
201 |
|
---|
202 | // ensure maximal and minimal standard deviations
|
---|
203 | if (sp.SigmaBounds != null && sp.SigmaBounds.GetLength(0) > 0) {
|
---|
204 | for (int i = 0; i < N; i++) {
|
---|
205 | var d = sp.SigmaBounds[Math.Min(i, sp.SigmaBounds.GetLength(0) - 1), 0];
|
---|
206 | if (d > sp.Sigma * minSqrtdiagC) sp.Sigma = d / minSqrtdiagC;
|
---|
207 | }
|
---|
208 | for (int i = 0; i < N; i++) {
|
---|
209 | var d = sp.SigmaBounds[Math.Min(i, sp.SigmaBounds.GetLength(0) - 1), 1];
|
---|
210 | if (d > sp.Sigma * maxSqrtdiagC) sp.Sigma = d / maxSqrtdiagC;
|
---|
211 | }
|
---|
212 | }
|
---|
213 | // end ensure ...
|
---|
214 |
|
---|
215 | // testAndCorrectNumerics
|
---|
216 | double fac = 1;
|
---|
217 | if (sp.D.Max() < 1e-6)
|
---|
218 | fac = 1.0 / sp.D.Max();
|
---|
219 | else if (sp.D.Min() > 1e4)
|
---|
220 | fac = 1.0 / sp.D.Min();
|
---|
221 |
|
---|
222 | if (fac != 1.0) {
|
---|
223 | sp.Sigma /= fac;
|
---|
224 | for (int i = 0; i < N; i++) {
|
---|
225 | sp.PC[i] *= fac;
|
---|
226 | sp.D[i] *= fac;
|
---|
227 | for (int j = 0; j < N; j++)
|
---|
228 | sp.C[i, j] *= fac * fac;
|
---|
229 | }
|
---|
230 | }
|
---|
231 | // end testAndCorrectNumerics
|
---|
232 |
|
---|
233 |
|
---|
234 | if (sp.InitialIterations >= iterations) {
|
---|
235 | for (int i = 0; i < N; i++)
|
---|
236 | sp.D[i] = Math.Sqrt(sp.C[i, i]);
|
---|
237 | DegenerateStateParameter.ActualValue = new BoolValue(false);
|
---|
238 | } else {
|
---|
239 |
|
---|
240 | double[] d;
|
---|
241 | double[,] b;
|
---|
242 | var success = alglib.smatrixevd(sp.C, N, 1, true, out d, out b);
|
---|
243 | sp.D = d;
|
---|
244 | sp.B = b;
|
---|
245 |
|
---|
246 | DegenerateStateParameter.ActualValue = new BoolValue(!success);
|
---|
247 |
|
---|
248 | // assign D to eigenvalue square roots
|
---|
249 | for (int i = 0; i < N; i++) {
|
---|
250 | if (sp.D[i] <= 0) { // numerical problem?
|
---|
251 | DegenerateStateParameter.ActualValue.Value = true;
|
---|
252 | sp.D[i] = 0;
|
---|
253 | } else sp.D[i] = Math.Sqrt(sp.D[i]);
|
---|
254 | }
|
---|
255 |
|
---|
256 | if (sp.D.Min() == 0.0) sp.AxisRatio = double.PositiveInfinity;
|
---|
257 | else sp.AxisRatio = sp.D.Max() / sp.D.Min();
|
---|
258 | }
|
---|
259 | return base.Apply();
|
---|
260 | }
|
---|
261 | }
|
---|
262 | } |
---|