1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Encodings.ScheduleEncoding;
|
---|
26 | using HeuristicLab.Encodings.ScheduleEncoding.PriorityRulesVector;
|
---|
27 | using HeuristicLab.Optimization;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.Scheduling {
|
---|
32 | [Item("JobSequencingMatrixDecoder", "Applies the GifflerThompson algorithm to create an active schedule from a JobSequencing Matrix.")]
|
---|
33 | [StorableType("139B3438-840B-49A5-9E0C-2B98EB00F4A6")]
|
---|
34 | public class PRVDecoder : ScheduleDecoder, IStochasticOperator, IJSSPOperator {
|
---|
35 |
|
---|
36 | public ILookupParameter<IRandom> RandomParameter {
|
---|
37 | get { return (LookupParameter<IRandom>)Parameters["Random"]; }
|
---|
38 | }
|
---|
39 | public ILookupParameter<ItemList<Job>> JobDataParameter {
|
---|
40 | get { return (LookupParameter<ItemList<Job>>)Parameters["JobData"]; }
|
---|
41 | }
|
---|
42 |
|
---|
43 | #region Priority Rules
|
---|
44 | //smallest number of remaining tasks
|
---|
45 | private Task FILORule(ItemList<Task> tasks) {
|
---|
46 | Task currentResult = tasks[tasks.Count - 1];
|
---|
47 | return currentResult;
|
---|
48 | }
|
---|
49 |
|
---|
50 | //earliest start time
|
---|
51 | private Task ESTRule(ItemList<Task> tasks, Schedule schedule) {
|
---|
52 | Task currentResult = RandomRule(tasks);
|
---|
53 | double currentEST = double.MaxValue;
|
---|
54 | foreach (Task t in tasks) {
|
---|
55 | double est = GTAlgorithmUtils.ComputeEarliestStartTime(t, schedule);
|
---|
56 | if (est < currentEST) {
|
---|
57 | currentEST = est;
|
---|
58 | currentResult = t;
|
---|
59 | }
|
---|
60 | }
|
---|
61 | return currentResult;
|
---|
62 | }
|
---|
63 |
|
---|
64 | //shortest processingtime
|
---|
65 | private Task SPTRule(ItemList<Task> tasks) {
|
---|
66 | Task currentResult = RandomRule(tasks);
|
---|
67 | foreach (Task t in tasks) {
|
---|
68 | if (t.Duration < currentResult.Duration)
|
---|
69 | currentResult = t;
|
---|
70 | }
|
---|
71 | return currentResult;
|
---|
72 | }
|
---|
73 |
|
---|
74 | //longest processing time
|
---|
75 | private Task LPTRule(ItemList<Task> tasks) {
|
---|
76 | Task currentResult = RandomRule(tasks);
|
---|
77 | foreach (Task t in tasks) {
|
---|
78 | if (t.Duration > currentResult.Duration)
|
---|
79 | currentResult = t;
|
---|
80 | }
|
---|
81 | return currentResult;
|
---|
82 | }
|
---|
83 |
|
---|
84 | //most work remaining
|
---|
85 | private Task MWRRule(ItemList<Task> tasks, ItemList<Job> jobs) {
|
---|
86 | Task currentResult = RandomRule(tasks);
|
---|
87 | double currentLargestRemainingProcessingTime = 0;
|
---|
88 | foreach (Task t in tasks) {
|
---|
89 | double remainingProcessingTime = 0;
|
---|
90 | foreach (Task jt in jobs[t.JobNr].Tasks) {
|
---|
91 | if (!jt.IsScheduled)
|
---|
92 | remainingProcessingTime += jt.Duration;
|
---|
93 | }
|
---|
94 | if (remainingProcessingTime > currentLargestRemainingProcessingTime) {
|
---|
95 | currentLargestRemainingProcessingTime = remainingProcessingTime;
|
---|
96 | currentResult = t;
|
---|
97 | }
|
---|
98 | }
|
---|
99 | return currentResult;
|
---|
100 | }
|
---|
101 |
|
---|
102 | //least work remaining
|
---|
103 | private Task LWRRule(ItemList<Task> tasks, ItemList<Job> jobs) {
|
---|
104 | Task currentResult = RandomRule(tasks);
|
---|
105 | double currentSmallestRemainingProcessingTime = double.MaxValue;
|
---|
106 | foreach (Task t in tasks) {
|
---|
107 | double remainingProcessingTime = 0;
|
---|
108 | foreach (Task jt in jobs[t.JobNr].Tasks) {
|
---|
109 | if (!jt.IsScheduled)
|
---|
110 | remainingProcessingTime += jt.Duration;
|
---|
111 | }
|
---|
112 | if (remainingProcessingTime < currentSmallestRemainingProcessingTime) {
|
---|
113 | currentSmallestRemainingProcessingTime = remainingProcessingTime;
|
---|
114 | currentResult = t;
|
---|
115 | }
|
---|
116 | }
|
---|
117 | return currentResult;
|
---|
118 | }
|
---|
119 |
|
---|
120 | //most operations remaining
|
---|
121 | private Task MORRule(ItemList<Task> tasks, ItemList<Job> jobs) {
|
---|
122 | Task currentResult = RandomRule(tasks);
|
---|
123 | int currentLargestNrOfRemainingTasks = 0;
|
---|
124 | foreach (Task t in tasks) {
|
---|
125 | int nrOfRemainingTasks = 0;
|
---|
126 | foreach (Task jt in jobs[t.JobNr].Tasks) {
|
---|
127 | if (!jt.IsScheduled)
|
---|
128 | nrOfRemainingTasks++;
|
---|
129 | }
|
---|
130 | if (currentLargestNrOfRemainingTasks < nrOfRemainingTasks) {
|
---|
131 | currentLargestNrOfRemainingTasks = nrOfRemainingTasks;
|
---|
132 | currentResult = t;
|
---|
133 | }
|
---|
134 | }
|
---|
135 | return currentResult;
|
---|
136 | }
|
---|
137 |
|
---|
138 | //least operationsremaining
|
---|
139 | private Task LORRule(ItemList<Task> tasks, ItemList<Job> jobs) {
|
---|
140 | Task currentResult = RandomRule(tasks);
|
---|
141 | int currentSmallestNrOfRemainingTasks = int.MaxValue;
|
---|
142 | foreach (Task t in tasks) {
|
---|
143 | int nrOfRemainingTasks = 0;
|
---|
144 | foreach (Task jt in jobs[t.JobNr].Tasks) {
|
---|
145 | if (!jt.IsScheduled)
|
---|
146 | nrOfRemainingTasks++;
|
---|
147 | }
|
---|
148 | if (currentSmallestNrOfRemainingTasks > nrOfRemainingTasks) {
|
---|
149 | currentSmallestNrOfRemainingTasks = nrOfRemainingTasks;
|
---|
150 | currentResult = t;
|
---|
151 | }
|
---|
152 | }
|
---|
153 | return currentResult;
|
---|
154 | }
|
---|
155 |
|
---|
156 | //first operation in Queue
|
---|
157 | private Task FIFORule(ItemList<Task> tasks) {
|
---|
158 | Task currentResult = tasks[0];
|
---|
159 | return currentResult;
|
---|
160 | }
|
---|
161 |
|
---|
162 | //random
|
---|
163 | private Task RandomRule(ItemList<Task> tasks) {
|
---|
164 | Task currentResult = tasks[RandomParameter.ActualValue.Next(tasks.Count)];
|
---|
165 | return currentResult;
|
---|
166 | }
|
---|
167 |
|
---|
168 | #endregion
|
---|
169 |
|
---|
170 | [StorableConstructor]
|
---|
171 | protected PRVDecoder(bool deserializing) : base(deserializing) { }
|
---|
172 | protected PRVDecoder(PRVDecoder original, Cloner cloner) : base(original, cloner) { }
|
---|
173 | public PRVDecoder()
|
---|
174 | : base() {
|
---|
175 | Parameters.Add(new LookupParameter<IRandom>("Random", "The pseudo random number generator which should be used for stochastic manipulation operators."));
|
---|
176 | Parameters.Add(new LookupParameter<ItemList<Job>>("JobData", "Job data taken from the SchedulingProblem - Instance."));
|
---|
177 | ScheduleEncodingParameter.ActualName = "PriorityRulesVector";
|
---|
178 | }
|
---|
179 |
|
---|
180 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
181 | return new PRVDecoder(this, cloner);
|
---|
182 | }
|
---|
183 |
|
---|
184 | private Task SelectTaskFromConflictSet(ItemList<Task> conflictSet, int ruleIndex, int nrOfRules, Schedule schedule, ItemList<Job> jobs) {
|
---|
185 | if (conflictSet.Count == 1)
|
---|
186 | return conflictSet[0];
|
---|
187 |
|
---|
188 | ruleIndex = ruleIndex % nrOfRules;
|
---|
189 | switch (ruleIndex) {
|
---|
190 | case 0: return FILORule(conflictSet);
|
---|
191 | case 1: return ESTRule(conflictSet, schedule);
|
---|
192 | case 2: return SPTRule(conflictSet);
|
---|
193 | case 3: return LPTRule(conflictSet);
|
---|
194 | case 4: return MWRRule(conflictSet, jobs);
|
---|
195 | case 5: return LWRRule(conflictSet, jobs);
|
---|
196 | case 6: return MORRule(conflictSet, jobs);
|
---|
197 | case 7: return LORRule(conflictSet, jobs);
|
---|
198 | case 8: return FIFORule(conflictSet);
|
---|
199 | case 9: return RandomRule(conflictSet);
|
---|
200 | default: return RandomRule(conflictSet);
|
---|
201 | }
|
---|
202 | }
|
---|
203 |
|
---|
204 | public override Schedule CreateScheduleFromEncoding(IScheduleEncoding encoding) {
|
---|
205 | var solution = encoding as PRVEncoding;
|
---|
206 | if (solution == null) throw new InvalidOperationException("Encoding is not of type PWREncoding");
|
---|
207 |
|
---|
208 | var jobs = (ItemList<Job>)JobDataParameter.ActualValue.Clone();
|
---|
209 | var resultingSchedule = new Schedule(jobs[0].Tasks.Count);
|
---|
210 |
|
---|
211 | //Reset scheduled tasks in result
|
---|
212 | foreach (Job j in jobs) {
|
---|
213 | foreach (Task t in j.Tasks) {
|
---|
214 | t.IsScheduled = false;
|
---|
215 | }
|
---|
216 | }
|
---|
217 |
|
---|
218 | //GT-Algorithm
|
---|
219 | //STEP 0 - Compute a list of "earliest operations"
|
---|
220 | ItemList<Task> earliestTasksList = GTAlgorithmUtils.GetEarliestNotScheduledTasks(jobs);
|
---|
221 | //int currentDecisionIndex = 0;
|
---|
222 | while (earliestTasksList.Count > 0) {
|
---|
223 | //STEP 1 - Get earliest not scheduled operation with minimal earliest completing time
|
---|
224 | Task minimal = GTAlgorithmUtils.GetTaskWithMinimalEC(earliestTasksList, resultingSchedule);
|
---|
225 |
|
---|
226 | //STEP 2 - Compute a conflict set of all operations that can be scheduled on the machine the previously selected operation runs on
|
---|
227 | ItemList<Task> conflictSet = GTAlgorithmUtils.GetConflictSetForTask(minimal, earliestTasksList, jobs, resultingSchedule);
|
---|
228 |
|
---|
229 | //STEP 3 - Select an operation from the conflict set (various methods depending on how the algorithm should work..)
|
---|
230 | //Task selectedTask = SelectTaskFromConflictSet(conflictSet, solution.PriorityRulesVector [currentDecisionIndex++], solution.NrOfRules.Value);
|
---|
231 | Task selectedTask = SelectTaskFromConflictSet(conflictSet, solution.PriorityRulesVector[minimal.JobNr], solution.NrOfRules.Value, resultingSchedule, jobs);
|
---|
232 |
|
---|
233 | //STEP 4 - Adding the selected operation to the current schedule
|
---|
234 | selectedTask.IsScheduled = true;
|
---|
235 | double startTime = GTAlgorithmUtils.ComputeEarliestStartTime(selectedTask, resultingSchedule);
|
---|
236 | resultingSchedule.ScheduleTask(selectedTask.ResourceNr, startTime, selectedTask.Duration, selectedTask.JobNr);
|
---|
237 |
|
---|
238 | //STEP 5 - Back to STEP 1
|
---|
239 | earliestTasksList = GTAlgorithmUtils.GetEarliestNotScheduledTasks(jobs);
|
---|
240 | }
|
---|
241 |
|
---|
242 | return resultingSchedule;
|
---|
243 | }
|
---|
244 | }
|
---|
245 | }
|
---|