[13368] | 1 | #region License Information
|
---|
[11193] | 2 | /* HeuristicLab
|
---|
[12721] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[11193] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Encodings.IntegerVectorEncoding;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 |
|
---|
| 33 | namespace HeuristicLab.Problems.Orienteering {
|
---|
[12721] | 34 | /// <summary>
|
---|
| 35 | /// Iterative improvement consists of three basic operators: shortening, vertex insert and vertex
|
---|
| 36 | /// exchange. The shortening operator tries to rearrange the vertices within a tour in order to
|
---|
| 37 | /// minimize the cost of the tour. As shortening operator a 2-opt is applied. (Schilde et. al. 2009)
|
---|
| 38 | /// </summary>
|
---|
| 39 | [Item("OrienteeringLocalImprovementOperator", @"Implements the iterative improvement procedure described in Schilde M., Doerner K.F., Hartl R.F., Kiechle G. 2009. Metaheuristics for the bi-objective orienteering problem. Swarm Intelligence, Volume 3, Issue 3, pp 179-201.")]
|
---|
[14711] | 40 | [StorableType("00A4C0F4-5EBF-427D-BBDE-C237E480F40A")]
|
---|
[11307] | 41 | public sealed class OrienteeringLocalImprovementOperator : SingleSuccessorOperator, ILocalImprovementOperator {
|
---|
[11226] | 42 |
|
---|
[11193] | 43 | #region Parameter Properties
|
---|
| 44 | public ILookupParameter<IntegerVector> IntegerVectorParameter {
|
---|
[11226] | 45 | get { return (ILookupParameter<IntegerVector>)Parameters["OrienteeringSolution"]; }
|
---|
[11193] | 46 | }
|
---|
| 47 | public ILookupParameter<DistanceMatrix> DistanceMatrixParameter {
|
---|
| 48 | get { return (ILookupParameter<DistanceMatrix>)Parameters["DistanceMatrix"]; }
|
---|
| 49 | }
|
---|
| 50 | public ILookupParameter<DoubleArray> ScoresParameter {
|
---|
| 51 | get { return (ILookupParameter<DoubleArray>)Parameters["Scores"]; }
|
---|
| 52 | }
|
---|
| 53 | public ILookupParameter<DoubleValue> MaximumDistanceParameter {
|
---|
| 54 | get { return (ILookupParameter<DoubleValue>)Parameters["MaximumDistance"]; }
|
---|
| 55 | }
|
---|
| 56 | public ILookupParameter<IntValue> StartingPointParameter {
|
---|
| 57 | get { return (ILookupParameter<IntValue>)Parameters["StartingPoint"]; }
|
---|
| 58 | }
|
---|
[11319] | 59 | public ILookupParameter<IntValue> TerminalPointParameter {
|
---|
| 60 | get { return (ILookupParameter<IntValue>)Parameters["TerminalPoint"]; }
|
---|
[11193] | 61 | }
|
---|
[11320] | 62 | public ILookupParameter<DoubleValue> PointVisitingCostsParameter {
|
---|
| 63 | get { return (ILookupParameter<DoubleValue>)Parameters["PointVisitingCosts"]; }
|
---|
[11193] | 64 | }
|
---|
| 65 | #region ILocalImprovementOperator Parameters
|
---|
[11242] | 66 | public IValueLookupParameter<IntValue> LocalIterationsParameter {
|
---|
| 67 | get { return (IValueLookupParameter<IntValue>)Parameters["LocalIterations"]; }
|
---|
| 68 | }
|
---|
[11193] | 69 | public IValueLookupParameter<IntValue> MaximumIterationsParameter {
|
---|
| 70 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumIterations"]; }
|
---|
| 71 | }
|
---|
| 72 | public ILookupParameter<IntValue> EvaluatedSolutionsParameter {
|
---|
| 73 | get { return (ILookupParameter<IntValue>)Parameters["EvaluatedSolutions"]; }
|
---|
| 74 | }
|
---|
| 75 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
| 76 | get { return (ILookupParameter<ResultCollection>)Parameters["Results"]; }
|
---|
| 77 | }
|
---|
| 78 | #endregion
|
---|
[11237] | 79 | public ILookupParameter<DoubleValue> QualityParameter {
|
---|
| 80 | get { return (ILookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
| 81 | }
|
---|
[11242] | 82 | public IValueParameter<IntValue> MaximumBlockLengthParmeter {
|
---|
| 83 | get { return (IValueParameter<IntValue>)Parameters["MaximumBlockLength"]; }
|
---|
| 84 | }
|
---|
| 85 | public IValueParameter<BoolValue> UseMaximumBlockLengthParmeter {
|
---|
| 86 | get { return (IValueParameter<BoolValue>)Parameters["UseMaximumBlockLength"]; }
|
---|
| 87 | }
|
---|
[11193] | 88 | #endregion
|
---|
| 89 |
|
---|
| 90 | [StorableConstructor]
|
---|
| 91 | private OrienteeringLocalImprovementOperator(bool deserializing) : base(deserializing) { }
|
---|
| 92 | private OrienteeringLocalImprovementOperator(OrienteeringLocalImprovementOperator original, Cloner cloner)
|
---|
| 93 | : base(original, cloner) {
|
---|
| 94 | }
|
---|
| 95 | public OrienteeringLocalImprovementOperator()
|
---|
| 96 | : base() {
|
---|
[11226] | 97 | Parameters.Add(new LookupParameter<IntegerVector>("OrienteeringSolution", "The Orienteering Solution given in path representation."));
|
---|
[11193] | 98 | Parameters.Add(new LookupParameter<DistanceMatrix>("DistanceMatrix", "The matrix which contains the distances between the points."));
|
---|
| 99 | Parameters.Add(new LookupParameter<DoubleArray>("Scores", "The scores of the points."));
|
---|
| 100 | Parameters.Add(new LookupParameter<DoubleValue>("MaximumDistance", "The maximum distance constraint for a Orienteering solution."));
|
---|
| 101 | Parameters.Add(new LookupParameter<IntValue>("StartingPoint", "Index of the starting point."));
|
---|
[11319] | 102 | Parameters.Add(new LookupParameter<IntValue>("TerminalPoint", "Index of the ending point."));
|
---|
[11320] | 103 | Parameters.Add(new LookupParameter<DoubleValue>("PointVisitingCosts", "The costs for visiting a point."));
|
---|
[11228] | 104 |
|
---|
[11242] | 105 | Parameters.Add(new ValueLookupParameter<IntValue>("LocalIterations", "The number of iterations that have already been performed.", new IntValue(0)));
|
---|
[11193] | 106 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumIterations", "The maximum number of generations which should be processed.", new IntValue(150)));
|
---|
| 107 | Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of evaluated moves."));
|
---|
| 108 | Parameters.Add(new LookupParameter<ResultCollection>("Results", "The name of the collection where the results are stored."));
|
---|
[11237] | 109 | Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The quality value of the solution."));
|
---|
[11242] | 110 |
|
---|
| 111 | Parameters.Add(new ValueParameter<IntValue>("MaximumBlockLength", "The maximum length of the 2-opt shortening.", new IntValue(30)));
|
---|
[11245] | 112 | Parameters.Add(new ValueParameter<BoolValue>("UseMaximumBlockLength", "Use a limitation of the length for the 2-opt shortening.", new BoolValue(false)));
|
---|
[11193] | 113 | }
|
---|
| 114 |
|
---|
| 115 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 116 | return new OrienteeringLocalImprovementOperator(this, cloner);
|
---|
| 117 | }
|
---|
| 118 |
|
---|
| 119 | public override IOperation Apply() {
|
---|
| 120 | int numPoints = ScoresParameter.ActualValue.Length;
|
---|
| 121 | var distances = DistanceMatrixParameter.ActualValue;
|
---|
| 122 | var scores = ScoresParameter.ActualValue;
|
---|
[11320] | 123 | double pointVisitingCosts = PointVisitingCostsParameter.ActualValue.Value;
|
---|
[11228] | 124 | double maxLength = MaximumDistanceParameter.ActualValue.Value;
|
---|
[11242] | 125 | int maxIterations = MaximumIterationsParameter.ActualValue.Value;
|
---|
| 126 | int maxBlockLength = MaximumBlockLengthParmeter.Value.Value;
|
---|
| 127 | bool useMaxBlockLength = UseMaximumBlockLengthParmeter.Value.Value;
|
---|
[11193] | 128 |
|
---|
[12721] | 129 | bool solutionChanged = true;
|
---|
[11193] | 130 |
|
---|
| 131 | var tour = IntegerVectorParameter.ActualValue.ToList();
|
---|
| 132 |
|
---|
[11323] | 133 | double tourLength = 0;
|
---|
[11228] | 134 | double tourScore = tour.Sum(point => scores[point]);
|
---|
[11193] | 135 |
|
---|
[11242] | 136 | var localIterations = LocalIterationsParameter.ActualValue;
|
---|
| 137 | var evaluatedSolutions = EvaluatedSolutionsParameter.ActualValue;
|
---|
| 138 | int evaluations = 0;
|
---|
| 139 |
|
---|
[11193] | 140 | // Check if the tour can be improved by adding or replacing points
|
---|
[12721] | 141 | while (solutionChanged && localIterations.Value < maxIterations) {
|
---|
| 142 | solutionChanged = false;
|
---|
[11193] | 143 |
|
---|
[11323] | 144 | if (localIterations.Value == 0)
|
---|
| 145 | tourLength = distances.CalculateTourLength(tour, pointVisitingCosts);
|
---|
| 146 |
|
---|
[11193] | 147 | // Try to shorten the path
|
---|
[11242] | 148 | ShortenPath(tour, distances, maxBlockLength, useMaxBlockLength, ref tourLength, ref evaluations);
|
---|
[11193] | 149 |
|
---|
| 150 | // Determine all points that have not yet been visited by this tour
|
---|
| 151 | var visitablePoints = Enumerable.Range(0, numPoints).Except(tour).ToList();
|
---|
| 152 |
|
---|
| 153 | // Determine if any of the visitable points can be included at any position within the tour
|
---|
| 154 | IncludeNewPoints(tour, visitablePoints,
|
---|
[11320] | 155 | distances, pointVisitingCosts, maxLength, scores,
|
---|
[12721] | 156 | ref tourLength, ref tourScore, ref evaluations, ref solutionChanged);
|
---|
[11193] | 157 |
|
---|
| 158 | // Determine if any of the visitable points can take the place of an already visited point in the tour to improve the scores
|
---|
| 159 | ReplacePoints(tour, visitablePoints,
|
---|
| 160 | distances, maxLength, scores,
|
---|
[12721] | 161 | ref tourLength, ref tourScore, ref evaluations, ref solutionChanged);
|
---|
[11242] | 162 |
|
---|
| 163 | localIterations.Value++;
|
---|
[11193] | 164 | }
|
---|
| 165 |
|
---|
[11242] | 166 | localIterations.Value = 0;
|
---|
| 167 | evaluatedSolutions.Value += evaluations;
|
---|
| 168 |
|
---|
[11228] | 169 | // Set new tour
|
---|
[11193] | 170 | IntegerVectorParameter.ActualValue = new IntegerVector(tour.ToArray());
|
---|
[11237] | 171 | QualityParameter.ActualValue.Value = tourScore;
|
---|
[11193] | 172 |
|
---|
| 173 | return base.Apply();
|
---|
| 174 | }
|
---|
| 175 |
|
---|
[11242] | 176 | private void ShortenPath(List<int> tour, DistanceMatrix distances, int maxBlockLength, bool useMaxBlockLength, ref double tourLength, ref int evaluations) {
|
---|
[12721] | 177 | bool solutionChanged;
|
---|
[11193] | 178 | int pathSize = tour.Count;
|
---|
[11242] | 179 | maxBlockLength = (useMaxBlockLength && (pathSize > maxBlockLength + 1)) ? maxBlockLength : (pathSize - 2);
|
---|
[11193] | 180 |
|
---|
| 181 | // Perform a 2-opt
|
---|
[12721] | 182 | do {
|
---|
| 183 | solutionChanged = false;
|
---|
[11193] | 184 |
|
---|
| 185 | for (int blockLength = 2; blockLength < maxBlockLength; blockLength++) {
|
---|
| 186 | // If an optimization has been done, start from the beginning
|
---|
[12721] | 187 | if (solutionChanged) break;
|
---|
[11193] | 188 |
|
---|
| 189 | for (int position = 1; position < (pathSize - blockLength); position++) {
|
---|
| 190 | // If an optimization has been done, start from the beginning
|
---|
[12721] | 191 | if (solutionChanged) break;
|
---|
[11193] | 192 |
|
---|
[11242] | 193 | evaluations++;
|
---|
| 194 |
|
---|
[11193] | 195 | double newLength = tourLength;
|
---|
[11228] | 196 | // Recalculate length of whole swapped part, in case distances are not symmetric
|
---|
| 197 | for (int index = position - 1; index < position + blockLength; index++) newLength -= distances[tour[index], tour[index + 1]];
|
---|
| 198 | for (int index = position + blockLength - 1; index > position; index--) newLength += distances[tour[index], tour[index - 1]];
|
---|
[11193] | 199 | newLength += distances[tour[position - 1], tour[position + blockLength - 1]];
|
---|
| 200 | newLength += distances[tour[position], tour[position + blockLength]];
|
---|
| 201 |
|
---|
[12721] | 202 | if (newLength < tourLength - 0.00001) {
|
---|
| 203 | // Avoid cycling caused by precision
|
---|
[11228] | 204 | var reversePart = tour.GetRange(position, blockLength).AsEnumerable().Reverse();
|
---|
[11193] | 205 |
|
---|
| 206 | tour.RemoveRange(position, blockLength);
|
---|
[11228] | 207 | tour.InsertRange(position, reversePart);
|
---|
[11193] | 208 |
|
---|
| 209 | tourLength = newLength;
|
---|
| 210 |
|
---|
| 211 | // Re-run the optimization
|
---|
[12721] | 212 | solutionChanged = true;
|
---|
[11193] | 213 | }
|
---|
| 214 | }
|
---|
| 215 | }
|
---|
[12721] | 216 | } while (solutionChanged);
|
---|
[11193] | 217 | }
|
---|
[12721] | 218 |
|
---|
[11193] | 219 | private void IncludeNewPoints(List<int> tour, List<int> visitablePoints,
|
---|
[11320] | 220 | DistanceMatrix distances, double pointVisitingCosts, double maxLength, DoubleArray scores,
|
---|
[12721] | 221 | ref double tourLength, ref double tourScore, ref int evaluations, ref bool solutionChanged) {
|
---|
[11193] | 222 |
|
---|
| 223 | for (int tourPosition = 1; tourPosition < tour.Count; tourPosition++) {
|
---|
| 224 | // If an optimization has been done, start from the beginning
|
---|
[12721] | 225 | if (solutionChanged) break;
|
---|
[11193] | 226 |
|
---|
| 227 | for (int i = 0; i < visitablePoints.Count; i++) {
|
---|
| 228 | // If an optimization has been done, start from the beginning
|
---|
[12721] | 229 | if (solutionChanged) break;
|
---|
[11193] | 230 |
|
---|
[11242] | 231 | evaluations++;
|
---|
| 232 |
|
---|
[11320] | 233 | double detour = distances.CalculateInsertionCosts(tour, tourPosition, visitablePoints[i], pointVisitingCosts);
|
---|
[11193] | 234 |
|
---|
| 235 | // Determine if including the point does not violate any constraint
|
---|
| 236 | if (tourLength + detour <= maxLength) {
|
---|
| 237 | // Insert the new point at this position
|
---|
| 238 | tour.Insert(tourPosition, visitablePoints[i]);
|
---|
| 239 |
|
---|
[11237] | 240 | // Update the overall tour tourLength and score
|
---|
[11193] | 241 | tourLength += detour;
|
---|
[11237] | 242 | tourScore += scores[visitablePoints[i]];
|
---|
[11193] | 243 |
|
---|
| 244 | // Re-run this optimization
|
---|
[12721] | 245 | solutionChanged = true;
|
---|
[11193] | 246 | }
|
---|
| 247 | }
|
---|
| 248 | }
|
---|
| 249 | }
|
---|
[12721] | 250 |
|
---|
[11193] | 251 | private void ReplacePoints(List<int> tour, List<int> visitablePoints,
|
---|
| 252 | DistanceMatrix distances, double maxLength, DoubleArray scores,
|
---|
[12721] | 253 | ref double tourLength, ref double tourScore, ref int evaluations, ref bool solutionChanged) {
|
---|
[11193] | 254 |
|
---|
| 255 | for (int tourPosition = 1; tourPosition < tour.Count - 1; tourPosition++) {
|
---|
| 256 | // If an optimization has been done, start from the beginning
|
---|
[12721] | 257 | if (solutionChanged) break;
|
---|
[11193] | 258 |
|
---|
| 259 | for (int i = 0; i < visitablePoints.Count; i++) {
|
---|
| 260 | // If an optimization has been done, start from the beginning
|
---|
[12721] | 261 | if (solutionChanged) break;
|
---|
[11193] | 262 |
|
---|
[11242] | 263 | evaluations++;
|
---|
| 264 |
|
---|
[11194] | 265 | double detour = distances.CalculateReplacementCosts(tour, tourPosition, visitablePoints[i]);
|
---|
[11193] | 266 |
|
---|
| 267 | double oldPointScore = scores[tour[tourPosition]];
|
---|
| 268 | double newPointScore = scores[visitablePoints[i]];
|
---|
| 269 |
|
---|
[11228] | 270 | if ((tourLength + detour <= maxLength) && (newPointScore > oldPointScore)) {
|
---|
[11193] | 271 | // Replace the old point by the new one
|
---|
| 272 | tour[tourPosition] = visitablePoints[i];
|
---|
| 273 |
|
---|
| 274 | // Update the overall tour tourLength
|
---|
| 275 | tourLength += detour;
|
---|
| 276 |
|
---|
| 277 | // Update the scores achieved by visiting this point
|
---|
| 278 | tourScore += newPointScore - oldPointScore;
|
---|
| 279 |
|
---|
| 280 | // Re-run this optimization
|
---|
[12721] | 281 | solutionChanged = true;
|
---|
[11193] | 282 | }
|
---|
| 283 | }
|
---|
| 284 | }
|
---|
| 285 | }
|
---|
| 286 | }
|
---|
[14712] | 287 | }
|
---|