1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Parameters;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
30 | [StorableClass("AA5A8540-1674-4469-8710-C354674704C1")]
|
---|
31 | [Item("ClassificationEnsembleProblemData", "Represents an item containing all data defining a classification problem.")]
|
---|
32 | public class ClassificationEnsembleProblemData : ClassificationProblemData {
|
---|
33 |
|
---|
34 | public override bool IsTrainingSample(int index) {
|
---|
35 | return index >= 0 && index < Dataset.Rows &&
|
---|
36 | TrainingPartition.Start <= index && index < TrainingPartition.End;
|
---|
37 | }
|
---|
38 |
|
---|
39 | public override bool IsTestSample(int index) {
|
---|
40 | return index >= 0 && index < Dataset.Rows &&
|
---|
41 | TestPartition.Start <= index && index < TestPartition.End;
|
---|
42 | }
|
---|
43 |
|
---|
44 | private static readonly ClassificationEnsembleProblemData emptyProblemData;
|
---|
45 | public static new ClassificationEnsembleProblemData EmptyProblemData {
|
---|
46 | get { return emptyProblemData; }
|
---|
47 | }
|
---|
48 |
|
---|
49 | static ClassificationEnsembleProblemData() {
|
---|
50 | var problemData = new ClassificationEnsembleProblemData();
|
---|
51 | problemData.Parameters.Clear();
|
---|
52 | problemData.Name = "Empty Classification ProblemData";
|
---|
53 | problemData.Description = "This ProblemData acts as place holder before the correct problem data is loaded.";
|
---|
54 | problemData.isEmpty = true;
|
---|
55 |
|
---|
56 | problemData.Parameters.Add(new FixedValueParameter<Dataset>(DatasetParameterName, "", new Dataset()));
|
---|
57 | problemData.Parameters.Add(new FixedValueParameter<ReadOnlyCheckedItemList<StringValue>>(InputVariablesParameterName, ""));
|
---|
58 | problemData.Parameters.Add(new FixedValueParameter<IntRange>(TrainingPartitionParameterName, "", (IntRange)new IntRange(0, 0).AsReadOnly()));
|
---|
59 | problemData.Parameters.Add(new FixedValueParameter<IntRange>(TestPartitionParameterName, "", (IntRange)new IntRange(0, 0).AsReadOnly()));
|
---|
60 | problemData.Parameters.Add(new ConstrainedValueParameter<StringValue>(TargetVariableParameterName, new ItemSet<StringValue>()));
|
---|
61 | problemData.Parameters.Add(new FixedValueParameter<StringMatrix>(ClassNamesParameterName, "", new StringMatrix(0, 0).AsReadOnly()));
|
---|
62 | problemData.Parameters.Add(new FixedValueParameter<DoubleMatrix>(ClassificationPenaltiesParameterName, "", (DoubleMatrix)new DoubleMatrix(0, 0).AsReadOnly()));
|
---|
63 | emptyProblemData = problemData;
|
---|
64 | }
|
---|
65 |
|
---|
66 | [StorableConstructor]
|
---|
67 | protected ClassificationEnsembleProblemData(bool deserializing) : base(deserializing) { }
|
---|
68 | protected ClassificationEnsembleProblemData(ClassificationEnsembleProblemData original, Cloner cloner) : base(original, cloner) { }
|
---|
69 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
70 | if (this == emptyProblemData) return emptyProblemData;
|
---|
71 | return new ClassificationEnsembleProblemData(this, cloner);
|
---|
72 | }
|
---|
73 |
|
---|
74 | public ClassificationEnsembleProblemData() : base() { }
|
---|
75 | public ClassificationEnsembleProblemData(IClassificationProblemData classificationProblemData)
|
---|
76 | : base(classificationProblemData.Dataset, classificationProblemData.AllowedInputVariables, classificationProblemData.TargetVariable) {
|
---|
77 | this.TrainingPartition.Start = classificationProblemData.TrainingPartition.Start;
|
---|
78 | this.TrainingPartition.End = classificationProblemData.TrainingPartition.End;
|
---|
79 | this.TestPartition.Start = classificationProblemData.TestPartition.Start;
|
---|
80 | this.TestPartition.End = classificationProblemData.TestPartition.End;
|
---|
81 | this.PositiveClass = classificationProblemData.PositiveClass;
|
---|
82 | }
|
---|
83 |
|
---|
84 | public ClassificationEnsembleProblemData(Dataset dataset, IEnumerable<string> allowedInputVariables, string targetVariable)
|
---|
85 | : base(dataset, allowedInputVariables, targetVariable) {
|
---|
86 | }
|
---|
87 | }
|
---|
88 | }
|
---|