1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
29 | [StorableClass("5E7CC8AA-D0EE-45A7-B658-8E6800B991C7")]
|
---|
30 | [Item("SymbolicDataAnalysisSolutionImpactValuesCalculator", "Calculates the impact values and replacements values for symbolic expression tree nodes.")]
|
---|
31 | public abstract class SymbolicDataAnalysisSolutionImpactValuesCalculator : Item, ISymbolicDataAnalysisSolutionImpactValuesCalculator {
|
---|
32 | protected SymbolicDataAnalysisSolutionImpactValuesCalculator() { }
|
---|
33 |
|
---|
34 | protected SymbolicDataAnalysisSolutionImpactValuesCalculator(SymbolicDataAnalysisSolutionImpactValuesCalculator original, Cloner cloner)
|
---|
35 | : base(original, cloner) { }
|
---|
36 | [StorableConstructor]
|
---|
37 | protected SymbolicDataAnalysisSolutionImpactValuesCalculator(bool deserializing) : base(deserializing) { }
|
---|
38 | public abstract double CalculateReplacementValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows);
|
---|
39 | public abstract double CalculateImpactValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows, double qualityForImpactsCalculation = double.NaN);
|
---|
40 | public abstract void CalculateImpactAndReplacementValues(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows, out double impactValue, out double replacementValue, out double newQualityForImpactsCalculation, double qualityForImpactsCalculation = double.NaN);
|
---|
41 |
|
---|
42 | protected static double CalculateReplacementValue(ISymbolicExpressionTreeNode node, ISymbolicExpressionTree sourceTree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
43 | IDataset dataset, IEnumerable<int> rows) {
|
---|
44 | //optimization: constant nodes return always the same value
|
---|
45 | ConstantTreeNode constantNode = node as ConstantTreeNode;
|
---|
46 | if (constantNode != null) return constantNode.Value;
|
---|
47 |
|
---|
48 | var rootSymbol = new ProgramRootSymbol().CreateTreeNode();
|
---|
49 | var startSymbol = new StartSymbol().CreateTreeNode();
|
---|
50 | rootSymbol.AddSubtree(startSymbol);
|
---|
51 | startSymbol.AddSubtree((ISymbolicExpressionTreeNode)node.Clone());
|
---|
52 |
|
---|
53 | var tempTree = new SymbolicExpressionTree(rootSymbol);
|
---|
54 | // clone ADFs of source tree
|
---|
55 | for (int i = 1; i < sourceTree.Root.SubtreeCount; i++) {
|
---|
56 | tempTree.Root.AddSubtree((ISymbolicExpressionTreeNode)sourceTree.Root.GetSubtree(i).Clone());
|
---|
57 | }
|
---|
58 | return interpreter.GetSymbolicExpressionTreeValues(tempTree, dataset, rows).Median();
|
---|
59 | }
|
---|
60 | }
|
---|
61 | }
|
---|