1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
30 | [StorableClass("4505C514-62AE-4CAF-870D-2669AF0B2C0B")]
|
---|
31 | [Item("SymbolicRegressionSolutionImpactValuesCalculator", "Calculate symbolic expression tree node impact values for regression problems.")]
|
---|
32 | public class SymbolicRegressionSolutionImpactValuesCalculator : SymbolicDataAnalysisSolutionImpactValuesCalculator {
|
---|
33 | public SymbolicRegressionSolutionImpactValuesCalculator() { }
|
---|
34 |
|
---|
35 | protected SymbolicRegressionSolutionImpactValuesCalculator(SymbolicRegressionSolutionImpactValuesCalculator original, Cloner cloner)
|
---|
36 | : base(original, cloner) { }
|
---|
37 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
38 | return new SymbolicRegressionSolutionImpactValuesCalculator(this, cloner);
|
---|
39 | }
|
---|
40 |
|
---|
41 | [StorableConstructor]
|
---|
42 | protected SymbolicRegressionSolutionImpactValuesCalculator(bool deserializing) : base(deserializing) { }
|
---|
43 | public override double CalculateReplacementValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows) {
|
---|
44 | var regressionModel = (ISymbolicRegressionModel)model;
|
---|
45 | var regressionProblemData = (IRegressionProblemData)problemData;
|
---|
46 |
|
---|
47 | return CalculateReplacementValue(node, regressionModel.SymbolicExpressionTree, regressionModel.Interpreter, regressionProblemData.Dataset, rows);
|
---|
48 | }
|
---|
49 |
|
---|
50 | public override double CalculateImpactValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows, double qualityForImpactsCalculation = double.NaN) {
|
---|
51 | double impactValue, replacementValue, newQualityForImpactsCalculation;
|
---|
52 | CalculateImpactAndReplacementValues(model, node, problemData, rows, out impactValue, out replacementValue, out newQualityForImpactsCalculation, qualityForImpactsCalculation);
|
---|
53 | return impactValue;
|
---|
54 | }
|
---|
55 |
|
---|
56 | public override void CalculateImpactAndReplacementValues(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node,
|
---|
57 | IDataAnalysisProblemData problemData, IEnumerable<int> rows, out double impactValue, out double replacementValue, out double newQualityForImpactsCalculation,
|
---|
58 | double qualityForImpactsCalculation = Double.NaN) {
|
---|
59 | var regressionModel = (ISymbolicRegressionModel)model;
|
---|
60 | var regressionProblemData = (IRegressionProblemData)problemData;
|
---|
61 |
|
---|
62 | var dataset = regressionProblemData.Dataset;
|
---|
63 | var targetValues = dataset.GetDoubleValues(regressionProblemData.TargetVariable, rows);
|
---|
64 |
|
---|
65 | OnlineCalculatorError errorState;
|
---|
66 | if (double.IsNaN(qualityForImpactsCalculation))
|
---|
67 | qualityForImpactsCalculation = CalculateQualityForImpacts(regressionModel, regressionProblemData, rows);
|
---|
68 |
|
---|
69 | replacementValue = CalculateReplacementValue(regressionModel, node, regressionProblemData, rows);
|
---|
70 | var constantNode = new ConstantTreeNode(new Constant()) { Value = replacementValue };
|
---|
71 |
|
---|
72 | var cloner = new Cloner();
|
---|
73 | var tempModel = cloner.Clone(regressionModel);
|
---|
74 | var tempModelNode = (ISymbolicExpressionTreeNode)cloner.GetClone(node);
|
---|
75 |
|
---|
76 | var tempModelParentNode = tempModelNode.Parent;
|
---|
77 | int i = tempModelParentNode.IndexOfSubtree(tempModelNode);
|
---|
78 | tempModelParentNode.RemoveSubtree(i);
|
---|
79 | tempModelParentNode.InsertSubtree(i, constantNode);
|
---|
80 |
|
---|
81 | var estimatedValues = tempModel.GetEstimatedValues(dataset, rows);
|
---|
82 | double r = OnlinePearsonsRCalculator.Calculate(targetValues, estimatedValues, out errorState);
|
---|
83 | if (errorState != OnlineCalculatorError.None) r = 0.0;
|
---|
84 | newQualityForImpactsCalculation = r * r;
|
---|
85 |
|
---|
86 | impactValue = qualityForImpactsCalculation - newQualityForImpactsCalculation;
|
---|
87 | }
|
---|
88 |
|
---|
89 | public static double CalculateQualityForImpacts(ISymbolicRegressionModel model, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
90 | var estimatedValues = model.GetEstimatedValues(problemData.Dataset, rows); // also bounds the values
|
---|
91 | var targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
92 | OnlineCalculatorError errorState;
|
---|
93 | var r = OnlinePearsonsRCalculator.Calculate(targetValues, estimatedValues, out errorState);
|
---|
94 | var quality = r * r;
|
---|
95 | if (errorState != OnlineCalculatorError.None) return double.NaN;
|
---|
96 | return quality;
|
---|
97 | }
|
---|
98 | }
|
---|
99 | }
|
---|