[5624] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12012] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5624] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
| 29 | /// <summary>
|
---|
| 30 | /// Represents a symbolic regression model
|
---|
| 31 | /// </summary>
|
---|
[14711] | 32 | [StorableType("6C6A5745-B044-4D3A-BD50-9190ED68C7B1")]
|
---|
[6555] | 33 | [Item(Name = "Symbolic Regression Model", Description = "Represents a symbolic regression model.")]
|
---|
[5624] | 34 | public class SymbolicRegressionModel : SymbolicDataAnalysisModel, ISymbolicRegressionModel {
|
---|
| 35 |
|
---|
[9587] | 36 |
|
---|
[5624] | 37 | [StorableConstructor]
|
---|
| 38 | protected SymbolicRegressionModel(bool deserializing) : base(deserializing) { }
|
---|
[9587] | 39 | protected SymbolicRegressionModel(SymbolicRegressionModel original, Cloner cloner) : base(original, cloner) { }
|
---|
| 40 |
|
---|
[5720] | 41 | public SymbolicRegressionModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
| 42 | double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue)
|
---|
[9587] | 43 | : base(tree, interpreter, lowerEstimationLimit, upperEstimationLimit) { }
|
---|
[5624] | 44 |
|
---|
| 45 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 46 | return new SymbolicRegressionModel(this, cloner);
|
---|
| 47 | }
|
---|
| 48 |
|
---|
[12509] | 49 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[5720] | 50 | return Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, rows)
|
---|
[9587] | 51 | .LimitToRange(LowerEstimationLimit, UpperEstimationLimit);
|
---|
[5624] | 52 | }
|
---|
[5818] | 53 |
|
---|
[6603] | 54 | public ISymbolicRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
[8528] | 55 | return new SymbolicRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
[6603] | 56 | }
|
---|
| 57 | IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
| 58 | return CreateRegressionSolution(problemData);
|
---|
| 59 | }
|
---|
[8972] | 60 |
|
---|
| 61 | public void Scale(IRegressionProblemData problemData) {
|
---|
| 62 | Scale(problemData, problemData.TargetVariable);
|
---|
| 63 | }
|
---|
[5624] | 64 | }
|
---|
| 65 | }
|
---|