1 | #region License Information
|
---|
2 |
|
---|
3 | /* HeuristicLab
|
---|
4 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
5 | *
|
---|
6 | * This file is part of HeuristicLab.
|
---|
7 | *
|
---|
8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
9 | * it under the terms of the GNU General Public License as published by
|
---|
10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
11 | * (at your option) any later version.
|
---|
12 | *
|
---|
13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | * GNU General Public License for more details.
|
---|
17 | *
|
---|
18 | * You should have received a copy of the GNU General Public License
|
---|
19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
20 | */
|
---|
21 |
|
---|
22 | #endregion
|
---|
23 |
|
---|
24 | using System;
|
---|
25 | using System.Linq;
|
---|
26 | using HeuristicLab.Analysis;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Core;
|
---|
29 | using HeuristicLab.Operators;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
35 | [StorableType("604417B8-FBAD-407C-8482-D39959159551")]
|
---|
36 | public class SymbolicRegressionSolutionsAnalyzer : SingleSuccessorOperator, IAnalyzer {
|
---|
37 | private const string ResultCollectionParameterName = "Results";
|
---|
38 | private const string RegressionSolutionQualitiesResultName = "Regression Solution Qualities";
|
---|
39 |
|
---|
40 | public ILookupParameter<ResultCollection> ResultCollectionParameter {
|
---|
41 | get { return (ILookupParameter<ResultCollection>)Parameters[ResultCollectionParameterName]; }
|
---|
42 | }
|
---|
43 |
|
---|
44 | public virtual bool EnabledByDefault {
|
---|
45 | get { return false; }
|
---|
46 | }
|
---|
47 |
|
---|
48 | [StorableConstructor]
|
---|
49 | protected SymbolicRegressionSolutionsAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
50 | protected SymbolicRegressionSolutionsAnalyzer(SymbolicRegressionSolutionsAnalyzer original, Cloner cloner)
|
---|
51 | : base(original, cloner) { }
|
---|
52 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
53 | return new SymbolicRegressionSolutionsAnalyzer(this, cloner);
|
---|
54 | }
|
---|
55 |
|
---|
56 | public SymbolicRegressionSolutionsAnalyzer() {
|
---|
57 | Parameters.Add(new LookupParameter<ResultCollection>(ResultCollectionParameterName, "The result collection to store the analysis results."));
|
---|
58 | }
|
---|
59 |
|
---|
60 | public override IOperation Apply() {
|
---|
61 | var results = ResultCollectionParameter.ActualValue;
|
---|
62 |
|
---|
63 | if (!results.ContainsKey(RegressionSolutionQualitiesResultName)) {
|
---|
64 | var newDataTable = new DataTable(RegressionSolutionQualitiesResultName);
|
---|
65 | results.Add(new Result(RegressionSolutionQualitiesResultName, "Chart displaying the training and test qualities of the regression solutions.", newDataTable));
|
---|
66 | }
|
---|
67 |
|
---|
68 | var dataTable = (DataTable)results[RegressionSolutionQualitiesResultName].Value;
|
---|
69 | foreach (var result in results.Where(r => r.Value is IRegressionSolution)) {
|
---|
70 | var solution = (IRegressionSolution)result.Value;
|
---|
71 |
|
---|
72 | var trainingR2 = result.Name + Environment.NewLine + "Training R²";
|
---|
73 | if (!dataTable.Rows.ContainsKey(trainingR2))
|
---|
74 | dataTable.Rows.Add(new DataRow(trainingR2));
|
---|
75 |
|
---|
76 | var testR2 = result.Name + Environment.NewLine + " Test R²";
|
---|
77 | if (!dataTable.Rows.ContainsKey(testR2))
|
---|
78 | dataTable.Rows.Add(new DataRow(testR2));
|
---|
79 |
|
---|
80 | dataTable.Rows[trainingR2].Values.Add(solution.TrainingRSquared);
|
---|
81 | dataTable.Rows[testR2].Values.Add(solution.TestRSquared);
|
---|
82 | }
|
---|
83 |
|
---|
84 | return base.Apply();
|
---|
85 | }
|
---|
86 | }
|
---|
87 | }
|
---|