[13368] | 1 | #region License Information
|
---|
[5500] | 2 | /* HeuristicLab
|
---|
[12012] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5500] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
[7677] | 30 | [Item("Mean absolute error Evaluator", "Calculates the mean absolute error of a symbolic regression solution.")]
|
---|
[14711] | 31 | [StorableType("F612CD5C-BCAA-44DF-BE0C-FBF31161F382")]
|
---|
[7677] | 32 | public class SymbolicRegressionSingleObjectiveMeanAbsoluteErrorEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
|
---|
[7672] | 33 | public override bool Maximization { get { return false; } }
|
---|
[5500] | 34 | [StorableConstructor]
|
---|
[7677] | 35 | protected SymbolicRegressionSingleObjectiveMeanAbsoluteErrorEvaluator(bool deserializing) : base(deserializing) { }
|
---|
| 36 | protected SymbolicRegressionSingleObjectiveMeanAbsoluteErrorEvaluator(SymbolicRegressionSingleObjectiveMeanAbsoluteErrorEvaluator original, Cloner cloner)
|
---|
[5500] | 37 | : base(original, cloner) {
|
---|
| 38 | }
|
---|
| 39 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[7677] | 40 | return new SymbolicRegressionSingleObjectiveMeanAbsoluteErrorEvaluator(this, cloner);
|
---|
[5500] | 41 | }
|
---|
[7677] | 42 | public SymbolicRegressionSingleObjectiveMeanAbsoluteErrorEvaluator() : base() { }
|
---|
[5505] | 43 |
|
---|
[10291] | 44 | public override IOperation InstrumentedApply() {
|
---|
[5851] | 45 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
[5500] | 46 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
[5851] | 47 |
|
---|
[12977] | 48 | double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, ApplyLinearScalingParameter.ActualValue.Value);
|
---|
[5851] | 49 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
| 50 |
|
---|
[10291] | 51 | return base.InstrumentedApply();
|
---|
[5500] | 52 | }
|
---|
| 53 |
|
---|
[7672] | 54 | public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling) {
|
---|
[5500] | 55 | IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
|
---|
[7677] | 56 | IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
[5942] | 57 | OnlineCalculatorError errorState;
|
---|
[7672] | 58 |
|
---|
[8634] | 59 | double mae;
|
---|
[7672] | 60 | if (applyLinearScaling) {
|
---|
[7677] | 61 | var maeCalculator = new OnlineMeanAbsoluteErrorCalculator();
|
---|
[8113] | 62 | CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, maeCalculator, problemData.Dataset.Rows);
|
---|
[7677] | 63 | errorState = maeCalculator.ErrorState;
|
---|
[8634] | 64 | mae = maeCalculator.MeanAbsoluteError;
|
---|
[8113] | 65 | } else {
|
---|
[8634] | 66 | IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
|
---|
| 67 | mae = OnlineMeanAbsoluteErrorCalculator.Calculate(targetValues, boundedEstimatedValues, out errorState);
|
---|
[8113] | 68 | }
|
---|
[8664] | 69 | if (errorState != OnlineCalculatorError.None) return double.NaN;
|
---|
| 70 | return mae;
|
---|
[5500] | 71 | }
|
---|
[5607] | 72 |
|
---|
[5613] | 73 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
[5722] | 74 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
[5770] | 75 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
[8664] | 76 | ApplyLinearScalingParameter.ExecutionContext = context;
|
---|
[5722] | 77 |
|
---|
[8664] | 78 | double mse = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value);
|
---|
[5722] | 79 |
|
---|
| 80 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
[5770] | 81 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
[8664] | 82 | ApplyLinearScalingParameter.ExecutionContext = null;
|
---|
[5722] | 83 |
|
---|
| 84 | return mse;
|
---|
[5607] | 85 | }
|
---|
[5500] | 86 | }
|
---|
| 87 | }
|
---|