1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
32 | [Item("Log Residual Evaluator", "Evaluator for symbolic regression models that calculates the mean of logarithmic absolute residuals avg(log( 1 + abs(y' - y)))" +
|
---|
33 | "This evaluator does not perform linear scaling!" +
|
---|
34 | "This evaluator can be useful if the modeled function contains discontinuities (e.g. 1/x). " +
|
---|
35 | "For some data sets (e.g. Korns benchmark instances containing inverses of near zero values) the squared error or absolute " +
|
---|
36 | "error put too much emphasis on modeling the outlier values. Using log-residuals instead has the " +
|
---|
37 | "effect that smaller residuals have a stronger impact on the total quality compared to the large residuals." +
|
---|
38 | "This effects GP convergence because functional fragments which are necessary to explain small variations are also more likely" +
|
---|
39 | " to stay in the population. This is useful even when the actual objective function is mean of squared errors.")]
|
---|
40 | [StorableType("E1BDAF3F-70F7-48F1-B3EC-9B20C4A64A0E")]
|
---|
41 | public class SymbolicRegressionLogResidualEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
|
---|
42 | [StorableConstructor]
|
---|
43 | protected SymbolicRegressionLogResidualEvaluator(bool deserializing) : base(deserializing) { }
|
---|
44 | protected SymbolicRegressionLogResidualEvaluator(SymbolicRegressionLogResidualEvaluator original, Cloner cloner)
|
---|
45 | : base(original, cloner) {
|
---|
46 | }
|
---|
47 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
48 | return new SymbolicRegressionLogResidualEvaluator(this, cloner);
|
---|
49 | }
|
---|
50 |
|
---|
51 | public SymbolicRegressionLogResidualEvaluator() : base() { }
|
---|
52 |
|
---|
53 | public override bool Maximization { get { return false; } }
|
---|
54 |
|
---|
55 | public override IOperation InstrumentedApply() {
|
---|
56 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
57 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
58 |
|
---|
59 | double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows);
|
---|
60 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
61 |
|
---|
62 | return base.InstrumentedApply();
|
---|
63 | }
|
---|
64 |
|
---|
65 | public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
66 | IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
|
---|
67 | IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
68 | IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
|
---|
69 |
|
---|
70 | var logRes = boundedEstimatedValues.Zip(targetValues, (e, t) => Math.Log(1.0 + Math.Abs(e - t)));
|
---|
71 |
|
---|
72 | OnlineCalculatorError errorState;
|
---|
73 | OnlineCalculatorError varErrorState;
|
---|
74 | double mlr;
|
---|
75 | double variance;
|
---|
76 | OnlineMeanAndVarianceCalculator.Calculate(logRes, out mlr, out variance, out errorState, out varErrorState);
|
---|
77 | if (errorState != OnlineCalculatorError.None) return double.NaN;
|
---|
78 | return mlr;
|
---|
79 | }
|
---|
80 |
|
---|
81 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
82 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
83 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
84 |
|
---|
85 | double mlr = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows);
|
---|
86 |
|
---|
87 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
88 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
89 |
|
---|
90 | return mlr;
|
---|
91 | }
|
---|
92 | }
|
---|
93 | }
|
---|