1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
31 | [Item("Mean squared error & Tree size Evaluator", "Calculates the mean squared error and the tree size of a symbolic regression solution.")]
|
---|
32 | [StorableType("668CBA0D-FD5A-4BFD-B399-0DF6F4090176")]
|
---|
33 | public class SymbolicRegressionMultiObjectiveMeanSquaredErrorSolutionSizeEvaluator : SymbolicRegressionMultiObjectiveEvaluator {
|
---|
34 | [StorableConstructor]
|
---|
35 | protected SymbolicRegressionMultiObjectiveMeanSquaredErrorSolutionSizeEvaluator(bool deserializing) : base(deserializing) { }
|
---|
36 | protected SymbolicRegressionMultiObjectiveMeanSquaredErrorSolutionSizeEvaluator(SymbolicRegressionMultiObjectiveMeanSquaredErrorSolutionSizeEvaluator original, Cloner cloner)
|
---|
37 | : base(original, cloner) {
|
---|
38 | }
|
---|
39 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
40 | return new SymbolicRegressionMultiObjectiveMeanSquaredErrorSolutionSizeEvaluator(this, cloner);
|
---|
41 | }
|
---|
42 |
|
---|
43 | public SymbolicRegressionMultiObjectiveMeanSquaredErrorSolutionSizeEvaluator() : base() { }
|
---|
44 |
|
---|
45 | public override IEnumerable<bool> Maximization { get { return new bool[2] { false, false }; } }
|
---|
46 |
|
---|
47 | public override IOperation InstrumentedApply() {
|
---|
48 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
49 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
50 | var problemData = ProblemDataParameter.ActualValue;
|
---|
51 | var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
52 | var estimationLimits = EstimationLimitsParameter.ActualValue;
|
---|
53 | var applyLinearScaling = ApplyLinearScalingParameter.ActualValue.Value;
|
---|
54 |
|
---|
55 | if (UseConstantOptimization) {
|
---|
56 | SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(interpreter, solution, problemData, rows, applyLinearScaling, ConstantOptimizationIterations, estimationLimits.Upper, estimationLimits.Lower);
|
---|
57 | }
|
---|
58 |
|
---|
59 | double[] qualities = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, ApplyLinearScalingParameter.ActualValue.Value, DecimalPlaces);
|
---|
60 | QualitiesParameter.ActualValue = new DoubleArray(qualities);
|
---|
61 | return base.InstrumentedApply();
|
---|
62 | }
|
---|
63 |
|
---|
64 | public static double[] Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling, int decimalPlaces) {
|
---|
65 | var mse = SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator.Calculate(interpreter, solution, lowerEstimationLimit,
|
---|
66 | upperEstimationLimit, problemData, rows, applyLinearScaling);
|
---|
67 |
|
---|
68 | if (decimalPlaces >= 0)
|
---|
69 | mse = Math.Round(mse, decimalPlaces);
|
---|
70 |
|
---|
71 | return new double[2] { mse, solution.Length };
|
---|
72 | }
|
---|
73 |
|
---|
74 | public override double[] Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
75 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
76 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
77 | ApplyLinearScalingParameter.ExecutionContext = context;
|
---|
78 |
|
---|
79 | double[] quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value, DecimalPlaces);
|
---|
80 |
|
---|
81 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
82 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
83 | ApplyLinearScalingParameter.ExecutionContext = null;
|
---|
84 |
|
---|
85 | return quality;
|
---|
86 | }
|
---|
87 | }
|
---|
88 | }
|
---|