[13368] | 1 | #region License Information
|
---|
[5143] | 2 | /* HeuristicLab
|
---|
[12012] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5143] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.Parameters;
|
---|
| 30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.Optimization.Operators {
|
---|
| 33 | [Item("CrowdingDistanceAssignment", "Calculates the crowding distances for each sub-scope as described in Deb et al. 2002. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), pp. 182-197.")]
|
---|
[14711] | 34 | [StorableType("65537F31-1671-453F-B79D-4DCEE40D0E4A")]
|
---|
[11970] | 35 | public class CrowdingDistanceAssignment : SingleSuccessorOperator, IMultiObjectiveOperator {
|
---|
[5143] | 36 |
|
---|
| 37 | public ScopeTreeLookupParameter<DoubleArray> QualitiesParameter {
|
---|
| 38 | get { return (ScopeTreeLookupParameter<DoubleArray>)Parameters["Qualities"]; }
|
---|
| 39 | }
|
---|
| 40 |
|
---|
| 41 | public ScopeTreeLookupParameter<DoubleValue> CrowdingDistanceParameter {
|
---|
| 42 | get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["CrowdingDistance"]; }
|
---|
| 43 | }
|
---|
| 44 |
|
---|
| 45 | private void QualitiesParameter_DepthChanged(object sender, EventArgs e) {
|
---|
| 46 | CrowdingDistanceParameter.Depth = QualitiesParameter.Depth;
|
---|
| 47 | }
|
---|
| 48 |
|
---|
| 49 | [StorableConstructor]
|
---|
| 50 | protected CrowdingDistanceAssignment(bool deserializing) : base(deserializing) { }
|
---|
| 51 | protected CrowdingDistanceAssignment(CrowdingDistanceAssignment original, Cloner cloner) : base(original, cloner) { }
|
---|
| 52 | public CrowdingDistanceAssignment() {
|
---|
| 53 | Parameters.Add(new ScopeTreeLookupParameter<DoubleArray>("Qualities", "The vector of quality values."));
|
---|
| 54 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("CrowdingDistance", "Sets the crowding distance in each sub-scope."));
|
---|
[7351] | 55 | RegisterEventHandlers();
|
---|
[5143] | 56 | }
|
---|
| 57 |
|
---|
| 58 | [StorableHook(HookType.AfterDeserialization)]
|
---|
[7351] | 59 | private void AfterDeserialization() {
|
---|
| 60 | RegisterEventHandlers();
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | private void RegisterEventHandlers() {
|
---|
[5143] | 64 | QualitiesParameter.DepthChanged += new EventHandler(QualitiesParameter_DepthChanged);
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | public static void Apply(DoubleArray[] qualities, DoubleValue[] distances) {
|
---|
| 68 | int populationSize = qualities.Length;
|
---|
| 69 | int objectiveCount = qualities[0].Length;
|
---|
| 70 | for (int m = 0; m < objectiveCount; m++) {
|
---|
| 71 | Array.Sort<DoubleArray, DoubleValue>(qualities, distances, new QualitiesComparer(m));
|
---|
| 72 |
|
---|
| 73 | distances[0].Value = double.MaxValue;
|
---|
| 74 | distances[populationSize - 1].Value = double.MaxValue;
|
---|
| 75 |
|
---|
| 76 | double minQuality = qualities[0][m];
|
---|
| 77 | double maxQuality = qualities[populationSize - 1][m];
|
---|
| 78 | for (int i = 1; i < populationSize - 1; i++) {
|
---|
| 79 | distances[i].Value += (qualities[i + 1][m] - qualities[i - 1][m]) / (maxQuality - minQuality);
|
---|
| 80 | }
|
---|
| 81 | }
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | public override IOperation Apply() {
|
---|
| 85 | DoubleArray[] qualities = QualitiesParameter.ActualValue.ToArray();
|
---|
| 86 | int populationSize = qualities.Length;
|
---|
| 87 | DoubleValue[] distances = new DoubleValue[populationSize];
|
---|
| 88 | for (int i = 0; i < populationSize; i++)
|
---|
| 89 | distances[i] = new DoubleValue(0);
|
---|
| 90 |
|
---|
| 91 | CrowdingDistanceParameter.ActualValue = new ItemArray<DoubleValue>(distances);
|
---|
| 92 |
|
---|
| 93 | Apply(qualities, distances);
|
---|
| 94 |
|
---|
| 95 | return base.Apply();
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 | private void Initialize(ItemArray<DoubleValue> distances) {
|
---|
| 99 | for (int i = 0; i < distances.Length; i++) {
|
---|
| 100 | if (distances[i] == null) distances[i] = new DoubleValue(0);
|
---|
| 101 | else distances[i].Value = 0;
|
---|
| 102 | }
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | private class QualitiesComparer : IComparer<DoubleArray> {
|
---|
| 106 | private int index;
|
---|
| 107 |
|
---|
| 108 | public QualitiesComparer(int index) {
|
---|
| 109 | this.index = index;
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | #region IComparer<DoubleArray> Members
|
---|
| 113 |
|
---|
| 114 | public int Compare(DoubleArray x, DoubleArray y) {
|
---|
| 115 | if (x[index] < y[index]) return -1;
|
---|
| 116 | else if (x[index] > y[index]) return +1;
|
---|
| 117 | else return 0;
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | #endregion
|
---|
| 121 | }
|
---|
| 122 |
|
---|
| 123 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 124 | return new CrowdingDistanceAssignment(this, cloner);
|
---|
| 125 | }
|
---|
| 126 | }
|
---|
| 127 | }
|
---|