1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Common;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.Optimization;
|
---|
26 | using HeuristicLab.Parameters;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Random;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Encodings.RealVectorEncoding {
|
---|
31 | [Item("StochasticNormalMultiMoveGenerator", "Generates normal distributed moves from a given real vector.")]
|
---|
32 | [StorableClass("F8D689F6-6CF2-4896-9109-E9A6CCDF9AF4")]
|
---|
33 | public class StochasticNormalMultiMoveGenerator : AdditiveMoveGenerator, IMultiMoveGenerator {
|
---|
34 | public IValueLookupParameter<DoubleValue> SigmaParameter {
|
---|
35 | get { return (IValueLookupParameter<DoubleValue>)Parameters["Sigma"]; }
|
---|
36 | }
|
---|
37 | public IValueLookupParameter<IntValue> SampleSizeParameter {
|
---|
38 | get { return (IValueLookupParameter<IntValue>)Parameters["SampleSize"]; }
|
---|
39 | }
|
---|
40 |
|
---|
41 | [StorableConstructor]
|
---|
42 | protected StochasticNormalMultiMoveGenerator(bool deserializing) : base(deserializing) { }
|
---|
43 | protected StochasticNormalMultiMoveGenerator(StochasticNormalMultiMoveGenerator original, Cloner cloner) : base(original, cloner) { }
|
---|
44 | public StochasticNormalMultiMoveGenerator()
|
---|
45 | : base() {
|
---|
46 | Parameters.Add(new ValueLookupParameter<DoubleValue>("Sigma", "The standard deviation of the normal distribution.", new DoubleValue(1)));
|
---|
47 | Parameters.Add(new ValueLookupParameter<IntValue>("SampleSize", "The number of moves that should be generated."));
|
---|
48 | }
|
---|
49 |
|
---|
50 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
51 | return new StochasticNormalMultiMoveGenerator(this, cloner);
|
---|
52 | }
|
---|
53 |
|
---|
54 | public static AdditiveMove[] Apply(IRandom random, RealVector vector, double sigma, int sampleSize, DoubleMatrix bounds) {
|
---|
55 | AdditiveMove[] moves = new AdditiveMove[sampleSize];
|
---|
56 | NormalDistributedRandom N = new NormalDistributedRandom(random, 0, sigma);
|
---|
57 | for (int i = 0; i < sampleSize; i++) {
|
---|
58 | int index = random.Next(vector.Length);
|
---|
59 | double strength = 0, min = bounds[index % bounds.Rows, 0], max = bounds[index % bounds.Rows, 1];
|
---|
60 | do {
|
---|
61 | strength = N.NextDouble();
|
---|
62 | } while (vector[index] + strength < min || vector[index] + strength > max);
|
---|
63 | moves[i] = new AdditiveMove(index, strength);
|
---|
64 | }
|
---|
65 | return moves;
|
---|
66 | }
|
---|
67 |
|
---|
68 | protected override AdditiveMove[] GenerateMoves(IRandom random, RealVector realVector, DoubleMatrix bounds) {
|
---|
69 | return Apply(random, realVector, SigmaParameter.ActualValue.Value, SampleSizeParameter.ActualValue.Value, bounds);
|
---|
70 | }
|
---|
71 | }
|
---|
72 | }
|
---|