1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Encodings.BinaryVectorEncoding {
|
---|
28 | /// <summary>
|
---|
29 | /// Uniform crossover for binary vectors.
|
---|
30 | /// </summary>
|
---|
31 | /// <remarks>
|
---|
32 | /// It is implemented as described in Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg.
|
---|
33 | /// </remarks>
|
---|
34 | [Item("UniformCrossover", "Uniform crossover for binary vectors. It is implemented as described in Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg.")]
|
---|
35 | [StorableClass("429BD087-38BD-46D5-BBEC-6CF644A21455")]
|
---|
36 | public sealed class UniformCrossover : BinaryVectorCrossover {
|
---|
37 |
|
---|
38 | [StorableConstructor]
|
---|
39 | private UniformCrossover(bool deserializing) : base(deserializing) { }
|
---|
40 | private UniformCrossover(UniformCrossover original, Cloner cloner) : base(original, cloner) { }
|
---|
41 | public UniformCrossover() : base() { }
|
---|
42 |
|
---|
43 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
44 | return new UniformCrossover(this, cloner);
|
---|
45 | }
|
---|
46 |
|
---|
47 | /// <summary>
|
---|
48 | /// Performs a uniform crossover between two binary vectors.
|
---|
49 | /// </summary>
|
---|
50 | /// <param name="random">A random number generator.</param>
|
---|
51 | /// <param name="parent1">The first parent for crossover.</param>
|
---|
52 | /// <param name="parent2">The second parent for crossover.</param>
|
---|
53 | /// <returns>The newly created binary vector, resulting from the uniform crossover.</returns>
|
---|
54 | public static BinaryVector Apply(IRandom random, BinaryVector parent1, BinaryVector parent2) {
|
---|
55 | if (parent1.Length != parent2.Length)
|
---|
56 | throw new ArgumentException("UniformCrossover: The parents are of different length.");
|
---|
57 |
|
---|
58 | int length = parent1.Length;
|
---|
59 | bool[] result = new bool[length];
|
---|
60 |
|
---|
61 | for (int i = 0; i < length; i++) {
|
---|
62 | if (random.NextDouble() < 0.5)
|
---|
63 | result[i] = parent1[i];
|
---|
64 | else
|
---|
65 | result[i] = parent2[i];
|
---|
66 | }
|
---|
67 |
|
---|
68 | return new BinaryVector(result);
|
---|
69 | }
|
---|
70 |
|
---|
71 | /// <summary>
|
---|
72 | /// Performs a uniform crossover at a randomly chosen position of two
|
---|
73 | /// given parent binary vectors.
|
---|
74 | /// </summary>
|
---|
75 | /// <exception cref="ArgumentException">Thrown if there are not exactly two parents.</exception>
|
---|
76 | /// <param name="random">A random number generator.</param>
|
---|
77 | /// <param name="parents">An array containing the two binary vectors that should be crossed.</param>
|
---|
78 | /// <returns>The newly created binary vector, resulting from the uniform crossover.</returns>
|
---|
79 | protected override BinaryVector Cross(IRandom random, ItemArray<BinaryVector> parents) {
|
---|
80 | if (parents.Length != 2) throw new ArgumentException("ERROR in UniformCrossover: The number of parents is not equal to 2");
|
---|
81 |
|
---|
82 | return Apply(random, parents[0], parents[1]);
|
---|
83 | }
|
---|
84 | }
|
---|
85 | }
|
---|