1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | * and the BEACON Center for the Study of Evolution in Action.
|
---|
5 | *
|
---|
6 | * This file is part of HeuristicLab.
|
---|
7 | *
|
---|
8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
9 | * it under the terms of the GNU General Public License as published by
|
---|
10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
11 | * (at your option) any later version.
|
---|
12 | *
|
---|
13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | * GNU General Public License for more details.
|
---|
17 | *
|
---|
18 | * You should have received a copy of the GNU General Public License
|
---|
19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
20 | */
|
---|
21 | #endregion
|
---|
22 |
|
---|
23 | using System;
|
---|
24 | using System.Collections.Generic;
|
---|
25 | using System.Linq;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
29 | using HeuristicLab.Random;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Algorithms.ParameterlessPopulationPyramid {
|
---|
32 | // This code is based off the publication
|
---|
33 | // B. W. Goldman and W. F. Punch, "Parameter-less Population Pyramid," GECCO, pp. 785–792, 2014
|
---|
34 | // and the original source code in C++11 available from: https://github.com/brianwgoldman/Parameter-less_Population_Pyramid
|
---|
35 | public class LinkageTree {
|
---|
36 | private readonly int[][][] occurances;
|
---|
37 | private readonly List<int>[] clusters;
|
---|
38 | private List<int> clusterOrdering;
|
---|
39 | private readonly int length;
|
---|
40 | private readonly IRandom rand;
|
---|
41 | private bool rebuildRequired = false;
|
---|
42 |
|
---|
43 | public LinkageTree(int length, IRandom rand) {
|
---|
44 | this.length = length;
|
---|
45 | this.rand = rand;
|
---|
46 | occurances = new int[length][][];
|
---|
47 |
|
---|
48 | // Create a lower triangular matrix without the diagonal
|
---|
49 | for (int i = 1; i < length; i++) {
|
---|
50 | occurances[i] = new int[i][];
|
---|
51 | for (int j = 0; j < i; j++) {
|
---|
52 | occurances[i][j] = new int[4];
|
---|
53 | }
|
---|
54 | }
|
---|
55 | clusters = new List<int>[2 * length - 1];
|
---|
56 | for (int i = 0; i < clusters.Length; i++) {
|
---|
57 | clusters[i] = new List<int>();
|
---|
58 | }
|
---|
59 | clusterOrdering = new List<int>();
|
---|
60 |
|
---|
61 | // first "length" clusters just contain a single gene
|
---|
62 | for (int i = 0; i < length; i++) {
|
---|
63 | clusters[i].Add(i);
|
---|
64 | }
|
---|
65 | }
|
---|
66 |
|
---|
67 | public void Add(BinaryVector solution) {
|
---|
68 | if (solution.Length != length) throw new ArgumentException("The individual has not the correct length.");
|
---|
69 | for (int i = 1; i < solution.Length; i++) {
|
---|
70 | for (int j = 0; j < i; j++) {
|
---|
71 | // Updates the entry of the 4 long array based on the two bits
|
---|
72 |
|
---|
73 | var pattern = (Convert.ToByte(solution[j]) << 1) + Convert.ToByte(solution[i]);
|
---|
74 | occurances[i][j][pattern]++;
|
---|
75 | }
|
---|
76 | }
|
---|
77 | rebuildRequired = true;
|
---|
78 | }
|
---|
79 |
|
---|
80 | // While "total" always has an integer value, it is a double to reduce
|
---|
81 | // how often type casts are needed to prevent integer divison
|
---|
82 | // In the GECCO paper, calculates Equation 2
|
---|
83 | private static double NegativeEntropy(int[] counts, double total) {
|
---|
84 | double sum = 0;
|
---|
85 | for (int i = 0; i < counts.Length; i++) {
|
---|
86 | if (counts[i] != 0) {
|
---|
87 | sum += ((counts[i] / total) * Math.Log(counts[i] / total));
|
---|
88 | }
|
---|
89 | }
|
---|
90 | return sum;
|
---|
91 | }
|
---|
92 |
|
---|
93 | // Uses the frequency table to calcuate the entropy distance between two indices.
|
---|
94 | // In the GECCO paper, calculates Equation 1
|
---|
95 | private int[] bits = new int[4];
|
---|
96 | private double EntropyDistance(int i, int j) {
|
---|
97 | // This ensures you are using the lower triangular part of "occurances"
|
---|
98 | if (i < j) {
|
---|
99 | int temp = i;
|
---|
100 | i = j;
|
---|
101 | j = temp;
|
---|
102 | }
|
---|
103 | var entry = occurances[i][j];
|
---|
104 | // extracts the occurrences of the individual bits
|
---|
105 | bits[0] = entry[0] + entry[2]; // i zero
|
---|
106 | bits[1] = entry[1] + entry[3]; // i one
|
---|
107 | bits[2] = entry[0] + entry[1]; // j zero
|
---|
108 | bits[3] = entry[2] + entry[3]; // j one
|
---|
109 | double total = bits[0] + bits[1];
|
---|
110 | // entropy of the two bits on their own
|
---|
111 | double separate = NegativeEntropy(bits, total);
|
---|
112 | // entropy of the two bits as a single unit
|
---|
113 | double together = NegativeEntropy(entry, total);
|
---|
114 | // If together there is 0 entropy, the distance is zero
|
---|
115 | if (together.IsAlmost(0)) {
|
---|
116 | return 0.0;
|
---|
117 | }
|
---|
118 | return 2 - (separate / together);
|
---|
119 | }
|
---|
120 |
|
---|
121 |
|
---|
122 |
|
---|
123 | // Performs O(N^2) clustering based on the method described in:
|
---|
124 | // "Optimal implementations of UPGMA and other common clustering algorithms"
|
---|
125 | // by I. Gronau and S. Moran
|
---|
126 | // In the GECCO paper, Figure 2 is a simplified version of this algorithm.
|
---|
127 | private double[][] distances;
|
---|
128 | private void Rebuild() {
|
---|
129 | if (distances == null) {
|
---|
130 | distances = new double[clusters.Length * 2 - 1][];
|
---|
131 | for (int i = 0; i < distances.Length; i++)
|
---|
132 | distances[i] = new double[clusters.Length * 2 - 1];
|
---|
133 | }
|
---|
134 |
|
---|
135 |
|
---|
136 | // Keep track of which clusters have not been merged
|
---|
137 | var topLevel = new List<int>(length);
|
---|
138 | for (int i = 0; i < length; i++)
|
---|
139 | topLevel.Add(i);
|
---|
140 |
|
---|
141 | bool[] useful = new bool[clusters.Length];
|
---|
142 | for (int i = 0; i < useful.Length; i++)
|
---|
143 | useful[i] = true;
|
---|
144 |
|
---|
145 | // Store the distances between all clusters
|
---|
146 | for (int i = 1; i < length; i++) {
|
---|
147 | for (int j = 0; j < i; j++) {
|
---|
148 | distances[i][j] = EntropyDistance(clusters[i][0], clusters[j][0]);
|
---|
149 | // make it symmetric
|
---|
150 | distances[j][i] = distances[i][j];
|
---|
151 | }
|
---|
152 | }
|
---|
153 | // Each iteration we add some amount to the path, and remove the last
|
---|
154 | // two elements. This keeps track of how much of usable is in the path.
|
---|
155 | int end_of_path = 0;
|
---|
156 |
|
---|
157 | // build all clusters of size greater than 1
|
---|
158 | for (int index = length; index < clusters.Length; index++) {
|
---|
159 | // Shuffle everything not yet in the path
|
---|
160 | topLevel.ShuffleInPlace(rand, end_of_path, topLevel.Count - 1);
|
---|
161 |
|
---|
162 | // if nothing in the path, just add a random usable node
|
---|
163 | if (end_of_path == 0) {
|
---|
164 | end_of_path = 1;
|
---|
165 | }
|
---|
166 | while (end_of_path < topLevel.Count) {
|
---|
167 | // last node in the path
|
---|
168 | int final = topLevel[end_of_path - 1];
|
---|
169 |
|
---|
170 | // best_index stores the location of the best thing in the top level
|
---|
171 | int best_index = end_of_path;
|
---|
172 | double min_dist = distances[final][topLevel[best_index]];
|
---|
173 | // check all options which might be closer to "final" than "topLevel[best_index]"
|
---|
174 | for (int option = end_of_path + 1; option < topLevel.Count; option++) {
|
---|
175 | if (distances[final][topLevel[option]] < min_dist) {
|
---|
176 | min_dist = distances[final][topLevel[option]];
|
---|
177 | best_index = option;
|
---|
178 | }
|
---|
179 | }
|
---|
180 | // If the current last two in the path are minimally distant
|
---|
181 | if (end_of_path > 1 && min_dist >= distances[final][topLevel[end_of_path - 2]]) {
|
---|
182 | break;
|
---|
183 | }
|
---|
184 |
|
---|
185 | // move the best to the end of the path
|
---|
186 | topLevel.Swap(end_of_path, best_index);
|
---|
187 | end_of_path++;
|
---|
188 | }
|
---|
189 | // Last two elements in the path are the clusters to join
|
---|
190 | int first = topLevel[end_of_path - 2];
|
---|
191 | int second = topLevel[end_of_path - 1];
|
---|
192 |
|
---|
193 | // Only keep a cluster if the distance between the joining clusters is > zero
|
---|
194 | bool keep = !distances[first][second].IsAlmost(0.0);
|
---|
195 | useful[first] = keep;
|
---|
196 | useful[second] = keep;
|
---|
197 |
|
---|
198 | // create the new cluster
|
---|
199 | clusters[index] = clusters[first].Concat(clusters[second]).ToList();
|
---|
200 | // Calculate distances from all clusters to the newly created cluster
|
---|
201 | int i = 0;
|
---|
202 | int end = topLevel.Count - 1;
|
---|
203 | while (i <= end) {
|
---|
204 | int x = topLevel[i];
|
---|
205 | // Moves 'first' and 'second' to after "end" in topLevel
|
---|
206 | if (x == first || x == second) {
|
---|
207 | topLevel.Swap(i, end);
|
---|
208 | end--;
|
---|
209 | continue;
|
---|
210 | }
|
---|
211 | // Use the previous distances to calculate the joined distance
|
---|
212 | double first_distance = distances[first][x];
|
---|
213 | first_distance *= clusters[first].Count;
|
---|
214 | double second_distance = distances[second][x];
|
---|
215 | second_distance *= clusters[second].Count;
|
---|
216 | distances[x][index] = ((first_distance + second_distance)
|
---|
217 | / (clusters[first].Count + clusters[second].Count));
|
---|
218 | // make it symmetric
|
---|
219 | distances[index][x] = distances[x][index];
|
---|
220 | i++;
|
---|
221 | }
|
---|
222 |
|
---|
223 | // Remove first and second from the path
|
---|
224 | end_of_path -= 2;
|
---|
225 | topLevel.RemoveAt(topLevel.Count - 1);
|
---|
226 | topLevel[topLevel.Count - 1] = index;
|
---|
227 | }
|
---|
228 | // Extract the useful clusters
|
---|
229 | clusterOrdering.Clear();
|
---|
230 | // Add all useful clusters. The last one is never useful.
|
---|
231 | for (int i = 0; i < useful.Length - 1; i++) {
|
---|
232 | if (useful[i]) clusterOrdering.Add(i);
|
---|
233 | }
|
---|
234 |
|
---|
235 | // Shuffle before sort to ensure ties are broken randomly
|
---|
236 | clusterOrdering.ShuffleInPlace(rand);
|
---|
237 | clusterOrdering = clusterOrdering.OrderBy(i => clusters[i].Count).ToList();
|
---|
238 | }
|
---|
239 |
|
---|
240 | public IEnumerable<List<int>> Clusters {
|
---|
241 | get {
|
---|
242 | // Just in time rebuilding
|
---|
243 | if (rebuildRequired) Rebuild();
|
---|
244 | foreach (var index in clusterOrdering) {
|
---|
245 | // Send out the clusters in the desired order
|
---|
246 | yield return clusters[index];
|
---|
247 | }
|
---|
248 | }
|
---|
249 | }
|
---|
250 | }
|
---|
251 | }
|
---|