1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
27 | using HeuristicLab.Problems.DataAnalysis;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
30 | [Item("NCA Model", "")]
|
---|
31 | [StorableClass("499DA1EA-6742-4278-A4B1-A316285A81CD")]
|
---|
32 | public class NcaModel : NamedItem, INcaModel {
|
---|
33 |
|
---|
34 | [Storable]
|
---|
35 | private double[,] transformationMatrix;
|
---|
36 | public double[,] TransformationMatrix {
|
---|
37 | get { return (double[,])transformationMatrix.Clone(); }
|
---|
38 | }
|
---|
39 | [Storable]
|
---|
40 | private string[] allowedInputVariables;
|
---|
41 | [Storable]
|
---|
42 | private string targetVariable;
|
---|
43 | [Storable]
|
---|
44 | private INearestNeighbourModel nnModel;
|
---|
45 | [Storable]
|
---|
46 | private double[] classValues;
|
---|
47 |
|
---|
48 | [StorableConstructor]
|
---|
49 | protected NcaModel(bool deserializing) : base(deserializing) { }
|
---|
50 | protected NcaModel(NcaModel original, Cloner cloner)
|
---|
51 | : base(original, cloner) {
|
---|
52 | this.transformationMatrix = (double[,])original.transformationMatrix.Clone();
|
---|
53 | this.allowedInputVariables = (string[])original.allowedInputVariables.Clone();
|
---|
54 | this.targetVariable = original.targetVariable;
|
---|
55 | this.nnModel = cloner.Clone(original.nnModel);
|
---|
56 | this.classValues = (double[])original.classValues.Clone();
|
---|
57 | }
|
---|
58 | public NcaModel(int k, double[,] transformationMatrix, IDataset dataset, IEnumerable<int> rows, string targetVariable, IEnumerable<string> allowedInputVariables, double[] classValues) {
|
---|
59 | Name = ItemName;
|
---|
60 | Description = ItemDescription;
|
---|
61 | this.transformationMatrix = (double[,])transformationMatrix.Clone();
|
---|
62 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
63 | this.targetVariable = targetVariable;
|
---|
64 | this.classValues = (double[])classValues.Clone();
|
---|
65 |
|
---|
66 | var ds = ReduceDataset(dataset, rows);
|
---|
67 | nnModel = new NearestNeighbourModel(ds, Enumerable.Range(0, ds.Rows), k, ds.VariableNames.Last(), ds.VariableNames.Take(transformationMatrix.GetLength(1)), classValues);
|
---|
68 | }
|
---|
69 |
|
---|
70 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
71 | return new NcaModel(this, cloner);
|
---|
72 | }
|
---|
73 |
|
---|
74 | public IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
75 | var ds = ReduceDataset(dataset, rows);
|
---|
76 | return nnModel.GetEstimatedClassValues(ds, Enumerable.Range(0, ds.Rows));
|
---|
77 | }
|
---|
78 |
|
---|
79 | public INcaClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
80 | return new NcaClassificationSolution(new ClassificationProblemData(problemData), this);
|
---|
81 | }
|
---|
82 |
|
---|
83 | IClassificationSolution IClassificationModel.CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
84 | return CreateClassificationSolution(problemData);
|
---|
85 | }
|
---|
86 |
|
---|
87 | public double[,] Reduce(IDataset dataset, IEnumerable<int> rows) {
|
---|
88 | var data = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
|
---|
89 |
|
---|
90 | var targets = dataset.GetDoubleValues(targetVariable, rows).ToArray();
|
---|
91 | var result = new double[data.GetLength(0), transformationMatrix.GetLength(1) + 1];
|
---|
92 | for (int i = 0; i < data.GetLength(0); i++)
|
---|
93 | for (int j = 0; j < data.GetLength(1); j++) {
|
---|
94 | for (int x = 0; x < transformationMatrix.GetLength(1); x++) {
|
---|
95 | result[i, x] += data[i, j] * transformationMatrix[j, x];
|
---|
96 | }
|
---|
97 | result[i, transformationMatrix.GetLength(1)] = targets[i];
|
---|
98 | }
|
---|
99 | return result;
|
---|
100 | }
|
---|
101 |
|
---|
102 | public Dataset ReduceDataset(IDataset dataset, IEnumerable<int> rows) {
|
---|
103 | return new Dataset(Enumerable
|
---|
104 | .Range(0, transformationMatrix.GetLength(1))
|
---|
105 | .Select(x => "X" + x.ToString())
|
---|
106 | .Concat(targetVariable.ToEnumerable()),
|
---|
107 | Reduce(dataset, rows));
|
---|
108 | }
|
---|
109 | }
|
---|
110 | }
|
---|