1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
29 | [StorableClass("015C39DA-D747-4625-8CC9-3CD54536C06A")]
|
---|
30 | [Item(Name = "MeanProduct", Description = "Product of mean functions for Gaussian processes.")]
|
---|
31 | public sealed class MeanProduct : Item, IMeanFunction {
|
---|
32 | [Storable]
|
---|
33 | private ItemList<IMeanFunction> factors;
|
---|
34 |
|
---|
35 | [Storable]
|
---|
36 | private int numberOfVariables;
|
---|
37 |
|
---|
38 | public ItemList<IMeanFunction> Factors {
|
---|
39 | get { return factors; }
|
---|
40 | }
|
---|
41 |
|
---|
42 | [StorableConstructor]
|
---|
43 | private MeanProduct(bool deserializing)
|
---|
44 | : base(deserializing) {
|
---|
45 | }
|
---|
46 |
|
---|
47 | private MeanProduct(MeanProduct original, Cloner cloner)
|
---|
48 | : base(original, cloner) {
|
---|
49 | this.factors = cloner.Clone(original.factors);
|
---|
50 | this.numberOfVariables = original.numberOfVariables;
|
---|
51 | }
|
---|
52 |
|
---|
53 | public MeanProduct() {
|
---|
54 | this.factors = new ItemList<IMeanFunction>();
|
---|
55 | }
|
---|
56 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
57 | return new MeanProduct(this, cloner);
|
---|
58 | }
|
---|
59 |
|
---|
60 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
61 | this.numberOfVariables = numberOfVariables;
|
---|
62 | return factors.Select(t => t.GetNumberOfParameters(numberOfVariables)).Sum();
|
---|
63 | }
|
---|
64 |
|
---|
65 | public void SetParameter(double[] p) {
|
---|
66 | int offset = 0;
|
---|
67 | foreach (var t in factors) {
|
---|
68 | var numberOfParameters = t.GetNumberOfParameters(numberOfVariables);
|
---|
69 | t.SetParameter(p.Skip(offset).Take(numberOfParameters).ToArray());
|
---|
70 | offset += numberOfParameters;
|
---|
71 | }
|
---|
72 | }
|
---|
73 |
|
---|
74 |
|
---|
75 | public ParameterizedMeanFunction GetParameterizedMeanFunction(double[] p, IEnumerable<int> columnIndices) {
|
---|
76 | var factorMf = new List<ParameterizedMeanFunction>();
|
---|
77 | int totalNumberOfParameters = GetNumberOfParameters(numberOfVariables);
|
---|
78 | int[] factorIndexMap = new int[totalNumberOfParameters]; // maps k-th hyperparameter to the correct mean-term
|
---|
79 | int[] hyperParameterIndexMap = new int[totalNumberOfParameters]; // maps k-th hyperparameter to the l-th hyperparameter of the correct mean-term
|
---|
80 | int c = 0;
|
---|
81 | // get the parameterized mean function for each term
|
---|
82 | for (int factorIndex = 0; factorIndex < factors.Count; factorIndex++) {
|
---|
83 | var numberOfParameters = factors[factorIndex].GetNumberOfParameters(numberOfVariables);
|
---|
84 | factorMf.Add(factors[factorIndex].GetParameterizedMeanFunction(p.Take(numberOfParameters).ToArray(), columnIndices));
|
---|
85 | p = p.Skip(numberOfParameters).ToArray();
|
---|
86 |
|
---|
87 | for (int hyperParameterIndex = 0; hyperParameterIndex < numberOfParameters; hyperParameterIndex++) {
|
---|
88 | factorIndexMap[c] = factorIndex;
|
---|
89 | hyperParameterIndexMap[c] = hyperParameterIndex;
|
---|
90 | c++;
|
---|
91 | }
|
---|
92 | }
|
---|
93 |
|
---|
94 | var mf = new ParameterizedMeanFunction();
|
---|
95 | mf.Mean = (x, i) => factorMf.Select(t => t.Mean(x, i)).Aggregate((a, b) => a * b);
|
---|
96 | mf.Gradient = (x, i, k) => {
|
---|
97 | double result = 1.0;
|
---|
98 | int hyperParameterFactorIndex = factorIndexMap[k];
|
---|
99 | for (int factorIndex = 0; factorIndex < factors.Count; factorIndex++) {
|
---|
100 | if (factorIndex == hyperParameterFactorIndex) {
|
---|
101 | // multiply gradient
|
---|
102 | result *= factorMf[factorIndex].Gradient(x, i, hyperParameterIndexMap[k]);
|
---|
103 | } else {
|
---|
104 | // multiply mean
|
---|
105 | result *= factorMf[factorIndex].Mean(x, i);
|
---|
106 | }
|
---|
107 | }
|
---|
108 | return result;
|
---|
109 | };
|
---|
110 | return mf;
|
---|
111 | }
|
---|
112 | }
|
---|
113 | }
|
---|