[13368] | 1 | #region License Information
|
---|
[8401] | 2 | /* HeuristicLab
|
---|
[12012] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8401] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[8323] | 22 | using System;
|
---|
[8982] | 23 | using System.Collections.Generic;
|
---|
[8323] | 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
[8612] | 27 | using HeuristicLab.Data;
|
---|
[8982] | 28 | using HeuristicLab.Parameters;
|
---|
[8323] | 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
[8371] | 31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[13368] | 32 | [StorableClass("FDC8ABCE-A786-42D6-9595-56E528A00265")]
|
---|
[8323] | 33 | [Item(Name = "MeanConst", Description = "Constant mean function for Gaussian processes.")]
|
---|
[8612] | 34 | public sealed class MeanConst : ParameterizedNamedItem, IMeanFunction {
|
---|
[8982] | 35 | public IValueParameter<DoubleValue> ValueParameter {
|
---|
| 36 | get { return (IValueParameter<DoubleValue>)Parameters["Value"]; }
|
---|
| 37 | }
|
---|
[8473] | 38 |
|
---|
[8323] | 39 | [StorableConstructor]
|
---|
[8612] | 40 | private MeanConst(bool deserializing) : base(deserializing) { }
|
---|
| 41 | private MeanConst(MeanConst original, Cloner cloner)
|
---|
[8323] | 42 | : base(original, cloner) {
|
---|
| 43 | }
|
---|
| 44 | public MeanConst()
|
---|
| 45 | : base() {
|
---|
[8612] | 46 | this.name = ItemName;
|
---|
| 47 | this.description = ItemDescription;
|
---|
| 48 |
|
---|
[8982] | 49 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Value", "The constant value for the constant mean function."));
|
---|
[8323] | 50 | }
|
---|
| 51 |
|
---|
[8612] | 52 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 53 | return new MeanConst(this, cloner);
|
---|
[8323] | 54 | }
|
---|
[8612] | 55 |
|
---|
| 56 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
[8982] | 57 | return ValueParameter.Value != null ? 0 : 1;
|
---|
[8612] | 58 | }
|
---|
| 59 |
|
---|
[8982] | 60 | public void SetParameter(double[] p) {
|
---|
| 61 | double c;
|
---|
| 62 | GetParameters(p, out c);
|
---|
| 63 | ValueParameter.Value = new DoubleValue(c);
|
---|
[8612] | 64 | }
|
---|
| 65 |
|
---|
[8982] | 66 | private void GetParameters(double[] p, out double c) {
|
---|
| 67 | if (ValueParameter.Value == null) {
|
---|
| 68 | c = p[0];
|
---|
| 69 | } else {
|
---|
| 70 | if (p.Length > 0)
|
---|
| 71 | throw new ArgumentException(
|
---|
| 72 | "The length of the parameter vector does not match the number of free parameters for the constant mean function.",
|
---|
| 73 | "p");
|
---|
| 74 | c = ValueParameter.Value.Value;
|
---|
| 75 | }
|
---|
[8323] | 76 | }
|
---|
| 77 |
|
---|
[8982] | 78 | public ParameterizedMeanFunction GetParameterizedMeanFunction(double[] p, IEnumerable<int> columnIndices) {
|
---|
| 79 | double c;
|
---|
| 80 | GetParameters(p, out c);
|
---|
| 81 | var mf = new ParameterizedMeanFunction();
|
---|
| 82 | mf.Mean = (x, i) => c;
|
---|
| 83 | mf.Gradient = (x, i, k) => {
|
---|
| 84 | if (k > 0) throw new ArgumentException();
|
---|
| 85 | return 1.0;
|
---|
| 86 | };
|
---|
| 87 | return mf;
|
---|
[8323] | 88 | }
|
---|
| 89 | }
|
---|
| 90 | }
|
---|