[13368] | 1 | #region License Information
|
---|
[9534] | 2 | /* HeuristicLab
|
---|
[12012] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[9534] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Parameters;
|
---|
| 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[14711] | 32 | [StorableType("842B3E75-08DD-49D9-A6EC-631E2FE8D588")]
|
---|
[9534] | 33 | [Item(Name = "CovariancePiecewisePolynomial",
|
---|
| 34 | Description = "Piecewise polynomial covariance function with compact support for Gaussian processes.")]
|
---|
| 35 | public sealed class CovariancePiecewisePolynomial : ParameterizedNamedItem, ICovarianceFunction {
|
---|
| 36 | public IValueParameter<DoubleValue> LengthParameter {
|
---|
| 37 | get { return (IValueParameter<DoubleValue>)Parameters["Length"]; }
|
---|
| 38 | }
|
---|
| 39 |
|
---|
| 40 | public IValueParameter<DoubleValue> ScaleParameter {
|
---|
| 41 | get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
|
---|
| 42 | }
|
---|
| 43 |
|
---|
[9537] | 44 | public IConstrainedValueParameter<IntValue> VParameter {
|
---|
| 45 | get { return (IConstrainedValueParameter<IntValue>)Parameters["V"]; }
|
---|
[9534] | 46 | }
|
---|
[10489] | 47 | private bool HasFixedLengthParameter {
|
---|
| 48 | get { return LengthParameter.Value != null; }
|
---|
| 49 | }
|
---|
| 50 | private bool HasFixedScaleParameter {
|
---|
| 51 | get { return ScaleParameter.Value != null; }
|
---|
| 52 | }
|
---|
[9534] | 53 |
|
---|
| 54 | [StorableConstructor]
|
---|
| 55 | private CovariancePiecewisePolynomial(bool deserializing)
|
---|
| 56 | : base(deserializing) {
|
---|
| 57 | }
|
---|
| 58 |
|
---|
| 59 | private CovariancePiecewisePolynomial(CovariancePiecewisePolynomial original, Cloner cloner)
|
---|
| 60 | : base(original, cloner) {
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | public CovariancePiecewisePolynomial()
|
---|
| 64 | : base() {
|
---|
| 65 | Name = ItemName;
|
---|
| 66 | Description = ItemDescription;
|
---|
| 67 |
|
---|
| 68 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Length", "The length parameter of the isometric piecewise polynomial covariance function."));
|
---|
[9536] | 69 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale parameter of the piecewise polynomial covariance function."));
|
---|
[9534] | 70 |
|
---|
| 71 | var validValues = new ItemSet<IntValue>(new IntValue[] {
|
---|
| 72 | (IntValue)(new IntValue().AsReadOnly()),
|
---|
| 73 | (IntValue)(new IntValue(1).AsReadOnly()),
|
---|
| 74 | (IntValue)(new IntValue(2).AsReadOnly()),
|
---|
| 75 | (IntValue)(new IntValue(3).AsReadOnly()) });
|
---|
| 76 | Parameters.Add(new ConstrainedValueParameter<IntValue>("V", "The v parameter of the piecewise polynomial function (allowed values 0, 1, 2, 3).", validValues, validValues.First()));
|
---|
| 77 | }
|
---|
| 78 |
|
---|
| 79 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 80 | return new CovariancePiecewisePolynomial(this, cloner);
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
| 84 | return
|
---|
[10489] | 85 | (HasFixedLengthParameter ? 0 : 1) +
|
---|
| 86 | (HasFixedScaleParameter ? 0 : 1);
|
---|
[9534] | 87 | }
|
---|
| 88 |
|
---|
| 89 | public void SetParameter(double[] p) {
|
---|
| 90 | double @const, scale;
|
---|
| 91 | GetParameterValues(p, out @const, out scale);
|
---|
| 92 | LengthParameter.Value = new DoubleValue(@const);
|
---|
| 93 | ScaleParameter.Value = new DoubleValue(scale);
|
---|
| 94 | }
|
---|
| 95 |
|
---|
| 96 | private void GetParameterValues(double[] p, out double length, out double scale) {
|
---|
| 97 | // gather parameter values
|
---|
| 98 | int n = 0;
|
---|
[10489] | 99 | if (HasFixedLengthParameter) {
|
---|
[9534] | 100 | length = LengthParameter.Value.Value;
|
---|
| 101 | } else {
|
---|
| 102 | length = Math.Exp(p[n]);
|
---|
| 103 | n++;
|
---|
| 104 | }
|
---|
| 105 |
|
---|
[10489] | 106 | if (HasFixedScaleParameter) {
|
---|
[9534] | 107 | scale = ScaleParameter.Value.Value;
|
---|
| 108 | } else {
|
---|
| 109 | scale = Math.Exp(2 * p[n]);
|
---|
| 110 | n++;
|
---|
| 111 | }
|
---|
| 112 | if (p.Length != n) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovariancePiecewisePolynomial", "p");
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 | public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, IEnumerable<int> columnIndices) {
|
---|
| 116 | double length, scale;
|
---|
| 117 | int v = VParameter.Value.Value;
|
---|
| 118 | GetParameterValues(p, out length, out scale);
|
---|
[10489] | 119 | var fixedLength = HasFixedLengthParameter;
|
---|
| 120 | var fixedScale = HasFixedScaleParameter;
|
---|
[9534] | 121 | int exp = (int)Math.Floor(columnIndices.Count() / 2.0) + v + 1;
|
---|
| 122 |
|
---|
| 123 | Func<double, double> f;
|
---|
| 124 | Func<double, double> df;
|
---|
| 125 | switch (v) {
|
---|
| 126 | case 0:
|
---|
| 127 | f = (r) => 1.0;
|
---|
| 128 | df = (r) => 0.0;
|
---|
| 129 | break;
|
---|
| 130 | case 1:
|
---|
| 131 | f = (r) => 1 + (exp + 1) * r;
|
---|
| 132 | df = (r) => exp + 1;
|
---|
| 133 | break;
|
---|
| 134 | case 2:
|
---|
| 135 | f = (r) => 1 + (exp + 2) * r + (exp * exp + 4.0 * exp + 3) / 3.0 * r * r;
|
---|
| 136 | df = (r) => (exp + 2) + 2 * (exp * exp + 4.0 * exp + 3) / 3.0 * r;
|
---|
| 137 | break;
|
---|
| 138 | case 3:
|
---|
| 139 | f = (r) => 1 + (exp + 3) * r + (6.0 * exp * exp + 36 * exp + 45) / 15.0 * r * r +
|
---|
| 140 | (exp * exp * exp + 9 * exp * exp + 23 * exp + 45) / 15.0 * r * r * r;
|
---|
| 141 | df = (r) => (exp + 3) + 2 * (6.0 * exp * exp + 36 * exp + 45) / 15.0 * r +
|
---|
| 142 | (exp * exp * exp + 9 * exp * exp + 23 * exp + 45) / 5.0 * r * r;
|
---|
| 143 | break;
|
---|
| 144 | default: throw new ArgumentException();
|
---|
| 145 | }
|
---|
| 146 |
|
---|
| 147 | // create functions
|
---|
| 148 | var cov = new ParameterizedCovarianceFunction();
|
---|
| 149 | cov.Covariance = (x, i, j) => {
|
---|
[9543] | 150 | double k = Math.Sqrt(Util.SqrDist(x, i, x, j, 1.0 / length, columnIndices));
|
---|
[9534] | 151 | return scale * Math.Pow(Math.Max(1 - k, 0), exp + v) * f(k);
|
---|
| 152 | };
|
---|
| 153 | cov.CrossCovariance = (x, xt, i, j) => {
|
---|
[9543] | 154 | double k = Math.Sqrt(Util.SqrDist(x, i, xt, j, 1.0 / length, columnIndices));
|
---|
[9534] | 155 | return scale * Math.Pow(Math.Max(1 - k, 0), exp + v) * f(k);
|
---|
| 156 | };
|
---|
[10489] | 157 | cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, length, scale, v, exp, f, df, columnIndices, fixedLength, fixedScale);
|
---|
[9534] | 158 | return cov;
|
---|
| 159 | }
|
---|
| 160 |
|
---|
[10489] | 161 | private static IEnumerable<double> GetGradient(double[,] x, int i, int j, double length, double scale, int v, double exp, Func<double, double> f, Func<double, double> df, IEnumerable<int> columnIndices,
|
---|
| 162 | bool fixedLength, bool fixedScale) {
|
---|
[9543] | 163 | double k = Math.Sqrt(Util.SqrDist(x, i, x, j, 1.0 / length, columnIndices));
|
---|
[10489] | 164 | if (!fixedLength) yield return scale * Math.Pow(Math.Max(1.0 - k, 0), exp + v - 1) * k * ((exp + v) * f(k) - Math.Max(1 - k, 0) * df(k));
|
---|
| 165 | if (!fixedScale) yield return 2.0 * scale * Math.Pow(Math.Max(1 - k, 0), exp + v) * f(k);
|
---|
[9534] | 166 | }
|
---|
| 167 | }
|
---|
| 168 | }
|
---|