[13368] | 1 | #region License Information
|
---|
[8562] | 2 | /* HeuristicLab
|
---|
[12012] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8562] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
[8582] | 24 | using System.Linq;
|
---|
[8562] | 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
[8582] | 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Parameters;
|
---|
[8562] | 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[14711] | 32 | [StorableType("91D5C02C-8C70-4D18-B97D-4089CE8139B1")]
|
---|
[8562] | 33 | [Item(Name = "CovarianceMaternIso",
|
---|
| 34 | Description = "Matern covariance function for Gaussian processes.")]
|
---|
[8612] | 35 | public sealed class CovarianceMaternIso : ParameterizedNamedItem, ICovarianceFunction {
|
---|
[8582] | 36 | public IValueParameter<DoubleValue> InverseLengthParameter {
|
---|
[8982] | 37 | get { return (IValueParameter<DoubleValue>)Parameters["InverseLength"]; }
|
---|
[8582] | 38 | }
|
---|
| 39 |
|
---|
[8612] | 40 | public IValueParameter<DoubleValue> ScaleParameter {
|
---|
[8982] | 41 | get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
|
---|
[8612] | 42 | }
|
---|
[8582] | 43 |
|
---|
[8612] | 44 | public IConstrainedValueParameter<IntValue> DParameter {
|
---|
[8982] | 45 | get { return (IConstrainedValueParameter<IntValue>)Parameters["D"]; }
|
---|
[8612] | 46 | }
|
---|
[10489] | 47 | private bool HasFixedScaleParameter {
|
---|
| 48 | get { return ScaleParameter.Value != null; }
|
---|
| 49 | }
|
---|
| 50 | private bool HasFixedInverseLengthParameter {
|
---|
| 51 | get { return InverseLengthParameter.Value != null; }
|
---|
| 52 | }
|
---|
[8562] | 53 |
|
---|
| 54 | [StorableConstructor]
|
---|
[8612] | 55 | private CovarianceMaternIso(bool deserializing)
|
---|
[8562] | 56 | : base(deserializing) {
|
---|
| 57 | }
|
---|
| 58 |
|
---|
[8612] | 59 | private CovarianceMaternIso(CovarianceMaternIso original, Cloner cloner)
|
---|
[8562] | 60 | : base(original, cloner) {
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | public CovarianceMaternIso()
|
---|
| 64 | : base() {
|
---|
[8612] | 65 | Name = ItemName;
|
---|
| 66 | Description = ItemDescription;
|
---|
| 67 |
|
---|
[8982] | 68 | Parameters.Add(new OptionalValueParameter<DoubleValue>("InverseLength", "The inverse length parameter of the isometric Matern covariance function."));
|
---|
| 69 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale parameter of the isometric Matern covariance function."));
|
---|
[8582] | 70 | var validDValues = new ItemSet<IntValue>();
|
---|
| 71 | validDValues.Add((IntValue)new IntValue(1).AsReadOnly());
|
---|
| 72 | validDValues.Add((IntValue)new IntValue(3).AsReadOnly());
|
---|
| 73 | validDValues.Add((IntValue)new IntValue(5).AsReadOnly());
|
---|
[8982] | 74 | Parameters.Add(new ConstrainedValueParameter<IntValue>("D", "The d parameter (allowed values: 1, 3, or 5) of the isometric Matern covariance function.", validDValues, validDValues.First()));
|
---|
[8562] | 75 | }
|
---|
| 76 |
|
---|
| 77 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 78 | return new CovarianceMaternIso(this, cloner);
|
---|
| 79 | }
|
---|
| 80 |
|
---|
[8612] | 81 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
[8582] | 82 | return
|
---|
[10489] | 83 | (HasFixedInverseLengthParameter ? 0 : 1) +
|
---|
| 84 | (HasFixedScaleParameter ? 0 : 1);
|
---|
[8562] | 85 | }
|
---|
| 86 |
|
---|
[8982] | 87 | public void SetParameter(double[] p) {
|
---|
| 88 | double inverseLength, scale;
|
---|
| 89 | GetParameterValues(p, out scale, out inverseLength);
|
---|
| 90 | InverseLengthParameter.Value = new DoubleValue(inverseLength);
|
---|
| 91 | ScaleParameter.Value = new DoubleValue(scale);
|
---|
| 92 | }
|
---|
| 93 |
|
---|
| 94 | private void GetParameterValues(double[] p, out double scale, out double inverseLength) {
|
---|
| 95 | // gather parameter values
|
---|
| 96 | int c = 0;
|
---|
[10489] | 97 | if (HasFixedInverseLengthParameter) {
|
---|
[8982] | 98 | inverseLength = InverseLengthParameter.Value.Value;
|
---|
| 99 | } else {
|
---|
| 100 | inverseLength = 1.0 / Math.Exp(p[c]);
|
---|
| 101 | c++;
|
---|
[8582] | 102 | }
|
---|
[8982] | 103 |
|
---|
[10489] | 104 | if (HasFixedScaleParameter) {
|
---|
[8982] | 105 | scale = ScaleParameter.Value.Value;
|
---|
| 106 | } else {
|
---|
| 107 | scale = Math.Exp(2 * p[c]);
|
---|
| 108 | c++;
|
---|
[8582] | 109 | }
|
---|
[8982] | 110 | if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceMaternIso", "p");
|
---|
[8582] | 111 | }
|
---|
[8562] | 112 |
|
---|
[8982] | 113 | public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, IEnumerable<int> columnIndices) {
|
---|
| 114 | double inverseLength, scale;
|
---|
| 115 | int d = DParameter.Value.Value;
|
---|
| 116 | GetParameterValues(p, out scale, out inverseLength);
|
---|
[10489] | 117 | var fixedInverseLength = HasFixedInverseLengthParameter;
|
---|
| 118 | var fixedScale = HasFixedScaleParameter;
|
---|
[8982] | 119 | // create functions
|
---|
| 120 | var cov = new ParameterizedCovarianceFunction();
|
---|
| 121 | cov.Covariance = (x, i, j) => {
|
---|
| 122 | double dist = i == j
|
---|
| 123 | ? 0.0
|
---|
| 124 | : Math.Sqrt(Util.SqrDist(x, i, j, Math.Sqrt(d) * inverseLength, columnIndices));
|
---|
| 125 | return scale * m(d, dist);
|
---|
| 126 | };
|
---|
| 127 | cov.CrossCovariance = (x, xt, i, j) => {
|
---|
| 128 | double dist = Math.Sqrt(Util.SqrDist(x, i, xt, j, Math.Sqrt(d) * inverseLength, columnIndices));
|
---|
| 129 | return scale * m(d, dist);
|
---|
| 130 | };
|
---|
[10489] | 131 | cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, d, scale, inverseLength, columnIndices, fixedInverseLength, fixedScale);
|
---|
[8982] | 132 | return cov;
|
---|
| 133 | }
|
---|
[8582] | 134 |
|
---|
[8982] | 135 | private static double m(int d, double t) {
|
---|
[8562] | 136 | double f;
|
---|
| 137 | switch (d) {
|
---|
| 138 | case 1: { f = 1; break; }
|
---|
| 139 | case 3: { f = 1 + t; break; }
|
---|
| 140 | case 5: { f = 1 + t * (1 + t / 3.0); break; }
|
---|
| 141 | default: throw new InvalidOperationException();
|
---|
| 142 | }
|
---|
| 143 | return f * Math.Exp(-t);
|
---|
| 144 | }
|
---|
| 145 |
|
---|
[8982] | 146 | private static double dm(int d, double t) {
|
---|
[8562] | 147 | double df;
|
---|
| 148 | switch (d) {
|
---|
| 149 | case 1: { df = 1; break; }
|
---|
| 150 | case 3: { df = t; break; }
|
---|
| 151 | case 5: { df = t * (1 + t) / 3.0; break; }
|
---|
| 152 | default: throw new InvalidOperationException();
|
---|
| 153 | }
|
---|
| 154 | return df * t * Math.Exp(-t);
|
---|
| 155 | }
|
---|
| 156 |
|
---|
| 157 |
|
---|
[10489] | 158 | private static IEnumerable<double> GetGradient(double[,] x, int i, int j, int d, double scale, double inverseLength, IEnumerable<int> columnIndices,
|
---|
| 159 | bool fixedInverseLength, bool fixedScale) {
|
---|
[8562] | 160 | double dist = i == j
|
---|
| 161 | ? 0.0
|
---|
[8678] | 162 | : Math.Sqrt(Util.SqrDist(x, i, j, Math.Sqrt(d) * inverseLength, columnIndices));
|
---|
[8562] | 163 |
|
---|
[10489] | 164 | if (!fixedInverseLength) yield return scale * dm(d, dist);
|
---|
| 165 | if (!fixedScale) yield return 2 * scale * m(d, dist);
|
---|
[8562] | 166 | }
|
---|
| 167 | }
|
---|
| 168 | }
|
---|