1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Common;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.Operators;
|
---|
26 | using HeuristicLab.Optimization;
|
---|
27 | using HeuristicLab.Parameters;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 | using System;
|
---|
30 | using System.Linq;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Algorithms.CMAEvolutionStrategy {
|
---|
33 | [Item("Terminator", "Decides if the algorithm should terminate or not.")]
|
---|
34 | [StorableClass("0DEE7C0B-08FD-47B4-A8D2-18626C5BFE47")]
|
---|
35 | public class Terminator : Operator, IIterationBasedOperator, ISingleObjectiveOperator {
|
---|
36 |
|
---|
37 | protected OperatorParameter ContinueParameter {
|
---|
38 | get { return (OperatorParameter)Parameters["Continue"]; }
|
---|
39 | }
|
---|
40 | protected OperatorParameter TerminateParameter {
|
---|
41 | get { return (OperatorParameter)Parameters["Terminate"]; }
|
---|
42 | }
|
---|
43 |
|
---|
44 | public IOperator Continue {
|
---|
45 | get { return ContinueParameter.Value; }
|
---|
46 | set { ContinueParameter.Value = value; }
|
---|
47 | }
|
---|
48 |
|
---|
49 | public IOperator Terminate {
|
---|
50 | get { return TerminateParameter.Value; }
|
---|
51 | set { TerminateParameter.Value = value; }
|
---|
52 | }
|
---|
53 |
|
---|
54 | public IValueLookupParameter<BoolValue> MaximizationParameter {
|
---|
55 | get { return (IValueLookupParameter<BoolValue>)Parameters["Maximization"]; }
|
---|
56 | }
|
---|
57 |
|
---|
58 | public ILookupParameter<CMAParameters> StrategyParametersParameter {
|
---|
59 | get { return (ILookupParameter<CMAParameters>)Parameters["StrategyParameters"]; }
|
---|
60 | }
|
---|
61 |
|
---|
62 | public ILookupParameter<IntValue> IterationsParameter {
|
---|
63 | get { return (ILookupParameter<IntValue>)Parameters["Iterations"]; }
|
---|
64 | }
|
---|
65 |
|
---|
66 | public IValueLookupParameter<IntValue> MaximumIterationsParameter {
|
---|
67 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumIterations"]; }
|
---|
68 | }
|
---|
69 |
|
---|
70 | public ILookupParameter<IntValue> EvaluatedSolutionsParameter {
|
---|
71 | get { return (ILookupParameter<IntValue>)Parameters["EvaluatedSolutions"]; }
|
---|
72 | }
|
---|
73 |
|
---|
74 | public IValueLookupParameter<IntValue> MaximumEvaluatedSolutionsParameter {
|
---|
75 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumEvaluatedSolutions"]; }
|
---|
76 | }
|
---|
77 |
|
---|
78 | public IScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
79 | get { return (IScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
80 | }
|
---|
81 |
|
---|
82 | public IValueLookupParameter<DoubleValue> TargetQualityParameter {
|
---|
83 | get { return (IValueLookupParameter<DoubleValue>)Parameters["TargetQuality"]; }
|
---|
84 | }
|
---|
85 |
|
---|
86 | public IValueLookupParameter<DoubleValue> MinimumQualityChangeParameter {
|
---|
87 | get { return (IValueLookupParameter<DoubleValue>)Parameters["MinimumQualityChange"]; }
|
---|
88 | }
|
---|
89 |
|
---|
90 | public IValueLookupParameter<DoubleValue> MinimumQualityHistoryChangeParameter {
|
---|
91 | get { return (IValueLookupParameter<DoubleValue>)Parameters["MinimumQualityHistoryChange"]; }
|
---|
92 | }
|
---|
93 |
|
---|
94 | public IValueLookupParameter<DoubleValue> MinimumStandardDeviationParameter {
|
---|
95 | get { return (IValueLookupParameter<DoubleValue>)Parameters["MinimumStandardDeviation"]; }
|
---|
96 | }
|
---|
97 |
|
---|
98 | public ILookupParameter<DoubleArray> InitialSigmaParameter {
|
---|
99 | get { return (ILookupParameter<DoubleArray>)Parameters["InitialSigma"]; }
|
---|
100 | }
|
---|
101 |
|
---|
102 | public IValueLookupParameter<DoubleValue> MaximumStandardDeviationChangeParameter {
|
---|
103 | get { return (IValueLookupParameter<DoubleValue>)Parameters["MaximumStandardDeviationChange"]; }
|
---|
104 | }
|
---|
105 |
|
---|
106 | public ILookupParameter<BoolValue> DegenerateStateParameter {
|
---|
107 | get { return (ILookupParameter<BoolValue>)Parameters["DegenerateState"]; }
|
---|
108 | }
|
---|
109 |
|
---|
110 | [StorableConstructor]
|
---|
111 | protected Terminator(bool deserializing) : base(deserializing) { }
|
---|
112 | protected Terminator(Terminator original, Cloner cloner)
|
---|
113 | : base(original, cloner) { }
|
---|
114 | public Terminator() {
|
---|
115 | Parameters.Add(new OperatorParameter("Continue", "The operator that is executed if the stop conditions have not been met!"));
|
---|
116 | Parameters.Add(new OperatorParameter("Terminate", "The operator that is executed if the stop conditions have been met!"));
|
---|
117 | Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is to be maximized and false otherwise."));
|
---|
118 | Parameters.Add(new LookupParameter<CMAParameters>("StrategyParameters", "The CMA-ES strategy parameters."));
|
---|
119 | Parameters.Add(new LookupParameter<IntValue>("Iterations", "The number of iterations passed."));
|
---|
120 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumIterations", "The maximum number of iterations."));
|
---|
121 | Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of evaluated solutions."));
|
---|
122 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumEvaluatedSolutions", "The maximum number of evaluated solutions."));
|
---|
123 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The quality of the offspring."));
|
---|
124 | Parameters.Add(new ValueLookupParameter<DoubleValue>("TargetQuality", "(stopFitness) Surpassing this quality value terminates the algorithm."));
|
---|
125 | Parameters.Add(new ValueLookupParameter<DoubleValue>("MinimumQualityChange", "(stopTolFun) If the range of fitness values is less than a certain value the algorithm terminates (set to 0 or positive value to enable)."));
|
---|
126 | Parameters.Add(new ValueLookupParameter<DoubleValue>("MinimumQualityHistoryChange", "(stopTolFunHist) If the range of fitness values is less than a certain value for a certain time the algorithm terminates (set to 0 or positive to enable)."));
|
---|
127 | Parameters.Add(new ValueLookupParameter<DoubleValue>("MinimumStandardDeviation", "(stopTolXFactor) If the standard deviation falls below a certain value the algorithm terminates (set to 0 or positive to enable)."));
|
---|
128 | Parameters.Add(new LookupParameter<DoubleArray>("InitialSigma", "The initial value for Sigma."));
|
---|
129 | Parameters.Add(new ValueLookupParameter<DoubleValue>("MaximumStandardDeviationChange", "(stopTolUpXFactor) If the standard deviation changes by a value larger than this parameter the algorithm stops (set to a value > 0 to enable)."));
|
---|
130 | Parameters.Add(new LookupParameter<BoolValue>("DegenerateState", "Whether the algorithm state has degenerated and should be terminated."));
|
---|
131 | }
|
---|
132 |
|
---|
133 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
134 | return new Terminator(this, cloner);
|
---|
135 | }
|
---|
136 |
|
---|
137 | public override IOperation Apply() {
|
---|
138 | var terminateOp = Terminate != null ? ExecutionContext.CreateOperation(Terminate) : null;
|
---|
139 |
|
---|
140 | var degenerated = DegenerateStateParameter.ActualValue.Value;
|
---|
141 | if (degenerated) return terminateOp;
|
---|
142 |
|
---|
143 | var iterations = IterationsParameter.ActualValue.Value;
|
---|
144 | var maxIterations = MaximumIterationsParameter.ActualValue.Value;
|
---|
145 | if (iterations >= maxIterations) return terminateOp;
|
---|
146 |
|
---|
147 | var evals = EvaluatedSolutionsParameter.ActualValue.Value;
|
---|
148 | var maxEvals = MaximumEvaluatedSolutionsParameter.ActualValue.Value;
|
---|
149 | if (evals >= maxEvals) return terminateOp;
|
---|
150 |
|
---|
151 | var maximization = MaximizationParameter.ActualValue.Value;
|
---|
152 | var bestQuality = QualityParameter.ActualValue.First().Value;
|
---|
153 | var targetQuality = TargetQualityParameter.ActualValue.Value;
|
---|
154 | if (iterations > 1 && (maximization && bestQuality >= targetQuality
|
---|
155 | || !maximization && bestQuality <= targetQuality)) return terminateOp;
|
---|
156 |
|
---|
157 | var sp = StrategyParametersParameter.ActualValue;
|
---|
158 | var worstQuality = QualityParameter.ActualValue.Last().Value;
|
---|
159 | var minHist = sp.QualityHistory.Min();
|
---|
160 | var maxHist = sp.QualityHistory.Max();
|
---|
161 | var change = Math.Max(maxHist, Math.Max(bestQuality, worstQuality))
|
---|
162 | - Math.Min(minHist, Math.Min(bestQuality, worstQuality));
|
---|
163 | var stopTolFun = MinimumQualityChangeParameter.ActualValue.Value;
|
---|
164 | if (change <= stopTolFun) return terminateOp;
|
---|
165 |
|
---|
166 | if (iterations > sp.QualityHistorySize &&
|
---|
167 | maxHist - minHist <= MinimumQualityHistoryChangeParameter.ActualValue.Value)
|
---|
168 | return terminateOp;
|
---|
169 |
|
---|
170 | double minSqrtdiagC = int.MaxValue, maxSqrtdiagC = int.MinValue;
|
---|
171 | for (int i = 0; i < sp.C.GetLength(0); i++) {
|
---|
172 | if (Math.Sqrt(sp.C[i, i]) < minSqrtdiagC) minSqrtdiagC = Math.Sqrt(sp.C[i, i]);
|
---|
173 | if (Math.Sqrt(sp.C[i, i]) > maxSqrtdiagC) maxSqrtdiagC = Math.Sqrt(sp.C[i, i]);
|
---|
174 | }
|
---|
175 |
|
---|
176 | var tolx = MinimumStandardDeviationParameter.ActualValue.Value;
|
---|
177 | if (sp.Sigma * maxSqrtdiagC < tolx
|
---|
178 | && sp.Sigma * sp.PC.Select(x => Math.Abs(x)).Max() < tolx) return terminateOp;
|
---|
179 |
|
---|
180 | var stopTolUpXFactor = MaximumStandardDeviationChangeParameter.ActualValue.Value;
|
---|
181 | if (sp.Sigma * maxSqrtdiagC > stopTolUpXFactor * InitialSigmaParameter.ActualValue.Max())
|
---|
182 | return terminateOp;
|
---|
183 |
|
---|
184 | return Continue != null ? ExecutionContext.CreateOperation(Continue) : null;
|
---|
185 | }
|
---|
186 | }
|
---|
187 | }
|
---|