1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Common;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
26 | using HeuristicLab.Operators;
|
---|
27 | using HeuristicLab.Optimization;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 | using System;
|
---|
31 | using System.Linq;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Algorithms.CMAEvolutionStrategy {
|
---|
34 | [Item("CMAUpdater", "Updates the covariance matrix and strategy parameters of CMA-ES.")]
|
---|
35 | [StorableClass("8EB2E2B6-ECD3-49DA-95C5-99AC5B8725D3")]
|
---|
36 | public class CMAUpdater : SingleSuccessorOperator, ICMAUpdater, IIterationBasedOperator, ISingleObjectiveOperator {
|
---|
37 |
|
---|
38 | public Type CMAType {
|
---|
39 | get { return typeof(CMAParameters); }
|
---|
40 | }
|
---|
41 |
|
---|
42 | #region Parameter Properties
|
---|
43 | public ILookupParameter<CMAParameters> StrategyParametersParameter {
|
---|
44 | get { return (ILookupParameter<CMAParameters>)Parameters["StrategyParameters"]; }
|
---|
45 | }
|
---|
46 |
|
---|
47 | public ILookupParameter<RealVector> MeanParameter {
|
---|
48 | get { return (ILookupParameter<RealVector>)Parameters["Mean"]; }
|
---|
49 | }
|
---|
50 |
|
---|
51 | public ILookupParameter<RealVector> OldMeanParameter {
|
---|
52 | get { return (ILookupParameter<RealVector>)Parameters["OldMean"]; }
|
---|
53 | }
|
---|
54 |
|
---|
55 | public IScopeTreeLookupParameter<RealVector> OffspringParameter {
|
---|
56 | get { return (IScopeTreeLookupParameter<RealVector>)Parameters["Offspring"]; }
|
---|
57 | }
|
---|
58 |
|
---|
59 | public IScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
60 | get { return (IScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
61 | }
|
---|
62 |
|
---|
63 | public ILookupParameter<IntValue> IterationsParameter {
|
---|
64 | get { return (ILookupParameter<IntValue>)Parameters["Iterations"]; }
|
---|
65 | }
|
---|
66 |
|
---|
67 | public IValueLookupParameter<IntValue> MaximumIterationsParameter {
|
---|
68 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumIterations"]; }
|
---|
69 | }
|
---|
70 |
|
---|
71 | public IValueLookupParameter<IntValue> MaximumEvaluatedSolutionsParameter {
|
---|
72 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumEvaluatedSolutions"]; }
|
---|
73 | }
|
---|
74 |
|
---|
75 | public ILookupParameter<BoolValue> DegenerateStateParameter {
|
---|
76 | get { return (ILookupParameter<BoolValue>)Parameters["DegenerateState"]; }
|
---|
77 | }
|
---|
78 | #endregion
|
---|
79 |
|
---|
80 | [StorableConstructor]
|
---|
81 | protected CMAUpdater(bool deserializing) : base(deserializing) { }
|
---|
82 | protected CMAUpdater(CMAUpdater original, Cloner cloner) : base(original, cloner) { }
|
---|
83 | public CMAUpdater()
|
---|
84 | : base() {
|
---|
85 | Parameters.Add(new LookupParameter<CMAParameters>("StrategyParameters", "The strategy parameters of CMA-ES."));
|
---|
86 | Parameters.Add(new LookupParameter<RealVector>("Mean", "The new mean."));
|
---|
87 | Parameters.Add(new LookupParameter<RealVector>("OldMean", "The old mean."));
|
---|
88 | Parameters.Add(new ScopeTreeLookupParameter<RealVector>("Offspring", "The created offspring solutions."));
|
---|
89 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The quality of the offspring."));
|
---|
90 | Parameters.Add(new LookupParameter<IntValue>("Iterations", "The number of iterations passed."));
|
---|
91 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumIterations", "The maximum number of iterations."));
|
---|
92 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumEvaluatedSolutions", "The maximum number of evaluated solutions."));
|
---|
93 | Parameters.Add(new LookupParameter<BoolValue>("DegenerateState", "Whether the algorithm state has degenerated and should be terminated."));
|
---|
94 | MeanParameter.ActualName = "XMean";
|
---|
95 | OldMeanParameter.ActualName = "XOld";
|
---|
96 | OffspringParameter.ActualName = "RealVector";
|
---|
97 | }
|
---|
98 |
|
---|
99 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
100 | return new CMAUpdater(this, cloner);
|
---|
101 | }
|
---|
102 |
|
---|
103 | public override IOperation Apply() {
|
---|
104 | var iterations = IterationsParameter.ActualValue.Value;
|
---|
105 |
|
---|
106 | var xold = OldMeanParameter.ActualValue;
|
---|
107 | var xmean = MeanParameter.ActualValue;
|
---|
108 | var offspring = OffspringParameter.ActualValue;
|
---|
109 | var quality = QualityParameter.ActualValue;
|
---|
110 | var lambda = offspring.Length;
|
---|
111 |
|
---|
112 | var N = xmean.Length;
|
---|
113 | var sp = StrategyParametersParameter.ActualValue;
|
---|
114 |
|
---|
115 | #region Initialize default values for strategy parameter adjustment
|
---|
116 | if (sp.ChiN == 0) sp.ChiN = Math.Sqrt(N) * (1.0 - 1.0 / (4.0 * N) + 1.0 / (21.0 * N * N));
|
---|
117 | if (sp.MuEff == 0) sp.MuEff = sp.Weights.Sum() * sp.Weights.Sum() / sp.Weights.Sum(x => x * x);
|
---|
118 | if (sp.CS == 0) sp.CS = (sp.MuEff + 2) / (N + sp.MuEff + 3);
|
---|
119 | if (sp.Damps == 0) {
|
---|
120 | var maxIterations = MaximumIterationsParameter.ActualValue.Value;
|
---|
121 | var maxEvals = MaximumEvaluatedSolutionsParameter.ActualValue.Value;
|
---|
122 | sp.Damps = 2 * Math.Max(0, Math.Sqrt((sp.MuEff - 1) / (N + 1)) - 1)
|
---|
123 | * Math.Max(0.3, 1 - N / (1e-6 + Math.Min(maxIterations, maxEvals / lambda))) + sp.CS + 1;
|
---|
124 | }
|
---|
125 | if (sp.CC == 0) sp.CC = 4.0 / (N + 4);
|
---|
126 | if (sp.MuCov == 0) sp.MuCov = sp.MuEff;
|
---|
127 | if (sp.CCov == 0) sp.CCov = 2.0 / ((N + 1.41) * (N + 1.41) * sp.MuCov)
|
---|
128 | + (1 - (1.0 / sp.MuCov)) * Math.Min(1, (2 * sp.MuEff - 1) / (sp.MuEff + (N + 2) * (N + 2)));
|
---|
129 | if (sp.CCovSep == 0) sp.CCovSep = Math.Min(1, sp.CCov * (N + 1.5) / 3);
|
---|
130 | #endregion
|
---|
131 |
|
---|
132 | sp.QualityHistory.Enqueue(quality[0].Value);
|
---|
133 | while (sp.QualityHistory.Count > sp.QualityHistorySize && sp.QualityHistorySize >= 0)
|
---|
134 | sp.QualityHistory.Dequeue();
|
---|
135 |
|
---|
136 | for (int i = 0; i < N; i++) {
|
---|
137 | sp.BDz[i] = Math.Sqrt(sp.MuEff) * (xmean[i] - xold[i]) / sp.Sigma;
|
---|
138 | }
|
---|
139 |
|
---|
140 | if (sp.InitialIterations >= iterations) {
|
---|
141 | for (int i = 0; i < N; i++) {
|
---|
142 | sp.PS[i] = (1 - sp.CS) * sp.PS[i]
|
---|
143 | + Math.Sqrt(sp.CS * (2 - sp.CS)) * sp.BDz[i] / sp.D[i];
|
---|
144 | }
|
---|
145 | } else {
|
---|
146 | var artmp = new double[N];
|
---|
147 | for (int i = 0; i < N; i++) {
|
---|
148 | var sum = 0.0;
|
---|
149 | for (int j = 0; j < N; j++) {
|
---|
150 | sum += sp.B[j, i] * sp.BDz[j];
|
---|
151 | }
|
---|
152 | artmp[i] = sum / sp.D[i];
|
---|
153 | }
|
---|
154 | for (int i = 0; i < N; i++) {
|
---|
155 | var sum = 0.0;
|
---|
156 | for (int j = 0; j < N; j++) {
|
---|
157 | sum += sp.B[i, j] * artmp[j];
|
---|
158 | }
|
---|
159 | sp.PS[i] = (1 - sp.CS) * sp.PS[i] + Math.Sqrt(sp.CS * (2 - sp.CS)) * sum;
|
---|
160 | }
|
---|
161 | }
|
---|
162 | var normPS = Math.Sqrt(sp.PS.Select(x => x * x).Sum());
|
---|
163 | var hsig = normPS / Math.Sqrt(1 - Math.Pow(1 - sp.CS, 2 * iterations)) / sp.ChiN < 1.4 + 2.0 / (N + 1) ? 1.0 : 0.0;
|
---|
164 | for (int i = 0; i < sp.PC.Length; i++) {
|
---|
165 | sp.PC[i] = (1 - sp.CC) * sp.PC[i]
|
---|
166 | + hsig * Math.Sqrt(sp.CC * (2 - sp.CC)) * sp.BDz[i];
|
---|
167 | }
|
---|
168 |
|
---|
169 | if (sp.CCov > 0) {
|
---|
170 | if (sp.InitialIterations >= iterations) {
|
---|
171 | for (int i = 0; i < N; i++) {
|
---|
172 | sp.C[i, i] = (1 - sp.CCovSep) * sp.C[i, i]
|
---|
173 | + sp.CCov * (1 / sp.MuCov)
|
---|
174 | * (sp.PC[i] * sp.PC[i] + (1 - hsig) * sp.CC * (2 - sp.CC) * sp.C[i, i]);
|
---|
175 | for (int k = 0; k < sp.Mu; k++) {
|
---|
176 | sp.C[i, i] += sp.CCov * (1 - 1 / sp.MuCov) * sp.Weights[k] * (offspring[k][i] - xold[i]) *
|
---|
177 | (offspring[k][i] - xold[i]) / (sp.Sigma * sp.Sigma);
|
---|
178 | }
|
---|
179 | }
|
---|
180 | } else {
|
---|
181 | for (int i = 0; i < N; i++) {
|
---|
182 | for (int j = 0; j < N; j++) {
|
---|
183 | sp.C[i, j] = (1 - sp.CCov) * sp.C[i, j]
|
---|
184 | + sp.CCov * (1 / sp.MuCov)
|
---|
185 | * (sp.PC[i] * sp.PC[j] + (1 - hsig) * sp.CC * (2 - sp.CC) * sp.C[i, j]);
|
---|
186 | for (int k = 0; k < sp.Mu; k++) {
|
---|
187 | sp.C[i, j] += sp.CCov * (1 - 1 / sp.MuCov) * sp.Weights[k] * (offspring[k][i] - xold[i]) *
|
---|
188 | (offspring[k][j] - xold[j]) / (sp.Sigma * sp.Sigma);
|
---|
189 | }
|
---|
190 | }
|
---|
191 | }
|
---|
192 | }
|
---|
193 | }
|
---|
194 | sp.Sigma *= Math.Exp((sp.CS / sp.Damps) * (normPS / sp.ChiN - 1));
|
---|
195 |
|
---|
196 | double minSqrtdiagC = int.MaxValue, maxSqrtdiagC = int.MinValue;
|
---|
197 | for (int i = 0; i < N; i++) {
|
---|
198 | if (Math.Sqrt(sp.C[i, i]) < minSqrtdiagC) minSqrtdiagC = Math.Sqrt(sp.C[i, i]);
|
---|
199 | if (Math.Sqrt(sp.C[i, i]) > maxSqrtdiagC) maxSqrtdiagC = Math.Sqrt(sp.C[i, i]);
|
---|
200 | }
|
---|
201 |
|
---|
202 | // ensure maximal and minimal standard deviations
|
---|
203 | if (sp.SigmaBounds != null && sp.SigmaBounds.GetLength(0) > 0) {
|
---|
204 | for (int i = 0; i < N; i++) {
|
---|
205 | var d = sp.SigmaBounds[Math.Min(i, sp.SigmaBounds.GetLength(0) - 1), 0];
|
---|
206 | if (d > sp.Sigma * minSqrtdiagC) sp.Sigma = d / minSqrtdiagC;
|
---|
207 | }
|
---|
208 | for (int i = 0; i < N; i++) {
|
---|
209 | var d = sp.SigmaBounds[Math.Min(i, sp.SigmaBounds.GetLength(0) - 1), 1];
|
---|
210 | if (d > sp.Sigma * maxSqrtdiagC) sp.Sigma = d / maxSqrtdiagC;
|
---|
211 | }
|
---|
212 | }
|
---|
213 | // end ensure ...
|
---|
214 |
|
---|
215 | // testAndCorrectNumerics
|
---|
216 | double fac = 1;
|
---|
217 | if (sp.D.Max() < 1e-6)
|
---|
218 | fac = 1.0 / sp.D.Max();
|
---|
219 | else if (sp.D.Min() > 1e4)
|
---|
220 | fac = 1.0 / sp.D.Min();
|
---|
221 |
|
---|
222 | if (fac != 1.0) {
|
---|
223 | sp.Sigma /= fac;
|
---|
224 | for (int i = 0; i < N; i++) {
|
---|
225 | sp.PC[i] *= fac;
|
---|
226 | sp.D[i] *= fac;
|
---|
227 | for (int j = 0; j < N; j++)
|
---|
228 | sp.C[i, j] *= fac * fac;
|
---|
229 | }
|
---|
230 | }
|
---|
231 | // end testAndCorrectNumerics
|
---|
232 |
|
---|
233 |
|
---|
234 | if (sp.InitialIterations >= iterations) {
|
---|
235 | for (int i = 0; i < N; i++)
|
---|
236 | sp.D[i] = Math.Sqrt(sp.C[i, i]);
|
---|
237 | DegenerateStateParameter.ActualValue = new BoolValue(false);
|
---|
238 | } else {
|
---|
239 |
|
---|
240 | // set B <- C
|
---|
241 | for (int i = 0; i < N; i++) {
|
---|
242 | for (int j = 0; j < N; j++) {
|
---|
243 | sp.B[i, j] = sp.C[i, j];
|
---|
244 | }
|
---|
245 | }
|
---|
246 | var success = Eigendecomposition(N, sp.B, sp.D);
|
---|
247 |
|
---|
248 | DegenerateStateParameter.ActualValue = new BoolValue(!success);
|
---|
249 |
|
---|
250 | // assign D to eigenvalue square roots
|
---|
251 | for (int i = 0; i < N; i++) {
|
---|
252 | if (sp.D[i] < 0) { // numerical problem?
|
---|
253 | DegenerateStateParameter.ActualValue.Value = true;
|
---|
254 | sp.D[i] = 0;
|
---|
255 | } else sp.D[i] = Math.Sqrt(sp.D[i]);
|
---|
256 | }
|
---|
257 |
|
---|
258 | if (sp.D.Min() == 0.0) sp.AxisRatio = double.PositiveInfinity;
|
---|
259 | else sp.AxisRatio = sp.D.Max() / sp.D.Min();
|
---|
260 | }
|
---|
261 | return base.Apply();
|
---|
262 | }
|
---|
263 |
|
---|
264 | private bool Eigendecomposition(int N, double[,] B, double[] diagD) {
|
---|
265 | bool result = true;
|
---|
266 | // eigendecomposition
|
---|
267 | var offdiag = new double[N];
|
---|
268 | try {
|
---|
269 | tred2(N, B, diagD, offdiag);
|
---|
270 | tql2(N, diagD, offdiag, B);
|
---|
271 | } catch { result = false; }
|
---|
272 |
|
---|
273 | return result;
|
---|
274 | } // eigendecomposition
|
---|
275 |
|
---|
276 |
|
---|
277 | // Symmetric Householder reduction to tridiagonal form, taken from JAMA package.
|
---|
278 | private void tred2(int n, double[,] V, double[] d, double[] e) {
|
---|
279 |
|
---|
280 | // This is derived from the Algol procedures tred2 by
|
---|
281 | // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
---|
282 | // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
---|
283 | // Fortran subroutine in EISPACK.
|
---|
284 |
|
---|
285 | for (int j = 0; j < n; j++) {
|
---|
286 | d[j] = V[n - 1, j];
|
---|
287 | }
|
---|
288 |
|
---|
289 | // Householder reduction to tridiagonal form.
|
---|
290 |
|
---|
291 | for (int i = n - 1; i > 0; i--) {
|
---|
292 |
|
---|
293 | // Scale to avoid under/overflow.
|
---|
294 |
|
---|
295 | double scale = 0.0;
|
---|
296 | double h = 0.0;
|
---|
297 | for (int k = 0; k < i; k++) {
|
---|
298 | scale = scale + Math.Abs(d[k]);
|
---|
299 | }
|
---|
300 | if (scale == 0.0) {
|
---|
301 | e[i] = d[i - 1];
|
---|
302 | for (int j = 0; j < i; j++) {
|
---|
303 | d[j] = V[i - 1, j];
|
---|
304 | V[i, j] = 0.0;
|
---|
305 | V[j, i] = 0.0;
|
---|
306 | }
|
---|
307 | } else {
|
---|
308 |
|
---|
309 | // Generate Householder vector.
|
---|
310 |
|
---|
311 | for (int k = 0; k < i; k++) {
|
---|
312 | d[k] /= scale;
|
---|
313 | h += d[k] * d[k];
|
---|
314 | }
|
---|
315 | double f = d[i - 1];
|
---|
316 | double g = Math.Sqrt(h);
|
---|
317 | if (f > 0) {
|
---|
318 | g = -g;
|
---|
319 | }
|
---|
320 | e[i] = scale * g;
|
---|
321 | h = h - f * g;
|
---|
322 | d[i - 1] = f - g;
|
---|
323 | for (int j = 0; j < i; j++) {
|
---|
324 | e[j] = 0.0;
|
---|
325 | }
|
---|
326 |
|
---|
327 | // Apply similarity transformation to remaining columns.
|
---|
328 |
|
---|
329 | for (int j = 0; j < i; j++) {
|
---|
330 | f = d[j];
|
---|
331 | V[j, i] = f;
|
---|
332 | g = e[j] + V[j, j] * f;
|
---|
333 | for (int k = j + 1; k <= i - 1; k++) {
|
---|
334 | g += V[k, j] * d[k];
|
---|
335 | e[k] += V[k, j] * f;
|
---|
336 | }
|
---|
337 | e[j] = g;
|
---|
338 | }
|
---|
339 | f = 0.0;
|
---|
340 | for (int j = 0; j < i; j++) {
|
---|
341 | e[j] /= h;
|
---|
342 | f += e[j] * d[j];
|
---|
343 | }
|
---|
344 | double hh = f / (h + h);
|
---|
345 | for (int j = 0; j < i; j++) {
|
---|
346 | e[j] -= hh * d[j];
|
---|
347 | }
|
---|
348 | for (int j = 0; j < i; j++) {
|
---|
349 | f = d[j];
|
---|
350 | g = e[j];
|
---|
351 | for (int k = j; k <= i - 1; k++) {
|
---|
352 | V[k, j] -= (f * e[k] + g * d[k]);
|
---|
353 | }
|
---|
354 | d[j] = V[i - 1, j];
|
---|
355 | V[i, j] = 0.0;
|
---|
356 | }
|
---|
357 | }
|
---|
358 | d[i] = h;
|
---|
359 | }
|
---|
360 |
|
---|
361 | // Accumulate transformations.
|
---|
362 |
|
---|
363 | for (int i = 0; i < n - 1; i++) {
|
---|
364 | V[n - 1, i] = V[i, i];
|
---|
365 | V[i, i] = 1.0;
|
---|
366 | double h = d[i + 1];
|
---|
367 | if (h != 0.0) {
|
---|
368 | for (int k = 0; k <= i; k++) {
|
---|
369 | d[k] = V[k, i + 1] / h;
|
---|
370 | }
|
---|
371 | for (int j = 0; j <= i; j++) {
|
---|
372 | double g = 0.0;
|
---|
373 | for (int k = 0; k <= i; k++) {
|
---|
374 | g += V[k, i + 1] * V[k, j];
|
---|
375 | }
|
---|
376 | for (int k = 0; k <= i; k++) {
|
---|
377 | V[k, j] -= g * d[k];
|
---|
378 | }
|
---|
379 | }
|
---|
380 | }
|
---|
381 | for (int k = 0; k <= i; k++) {
|
---|
382 | V[k, i + 1] = 0.0;
|
---|
383 | }
|
---|
384 | }
|
---|
385 | for (int j = 0; j < n; j++) {
|
---|
386 | d[j] = V[n - 1, j];
|
---|
387 | V[n - 1, j] = 0.0;
|
---|
388 | }
|
---|
389 | V[n - 1, n - 1] = 1.0;
|
---|
390 | e[0] = 0.0;
|
---|
391 | }
|
---|
392 |
|
---|
393 | // Symmetric tridiagonal QL algorithm, taken from JAMA package.
|
---|
394 | private void tql2(int n, double[] d, double[] e, double[,] V) {
|
---|
395 |
|
---|
396 | // This is derived from the Algol procedures tql2, by
|
---|
397 | // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
---|
398 | // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
---|
399 | // Fortran subroutine in EISPACK.
|
---|
400 |
|
---|
401 | for (int i = 1; i < n; i++) {
|
---|
402 | e[i - 1] = e[i];
|
---|
403 | }
|
---|
404 | e[n - 1] = 0.0;
|
---|
405 |
|
---|
406 | double f = 0.0;
|
---|
407 | double tst1 = 0.0;
|
---|
408 | double eps = Math.Pow(2.0, -52.0);
|
---|
409 | for (int l = 0; l < n; l++) {
|
---|
410 |
|
---|
411 | // Find small subdiagonal element
|
---|
412 |
|
---|
413 | tst1 = Math.Max(tst1, Math.Abs(d[l]) + Math.Abs(e[l]));
|
---|
414 | int m = l;
|
---|
415 | while (m < n) {
|
---|
416 | if (Math.Abs(e[m]) <= eps * tst1) {
|
---|
417 | break;
|
---|
418 | }
|
---|
419 | m++;
|
---|
420 | }
|
---|
421 |
|
---|
422 | // If m == l, d[l] is an eigenvalue,
|
---|
423 | // otherwise, iterate.
|
---|
424 |
|
---|
425 | if (m > l) {
|
---|
426 | int iter = 0;
|
---|
427 | do {
|
---|
428 | iter = iter + 1; // (Could check iteration count here.)
|
---|
429 |
|
---|
430 | // Compute implicit shift
|
---|
431 |
|
---|
432 | double g = d[l];
|
---|
433 | double p = (d[l + 1] - g) / (2.0 * e[l]);
|
---|
434 | double r = hypot(p, 1.0);
|
---|
435 | if (p < 0) {
|
---|
436 | r = -r;
|
---|
437 | }
|
---|
438 | d[l] = e[l] / (p + r);
|
---|
439 | d[l + 1] = e[l] * (p + r);
|
---|
440 | double dl1 = d[l + 1];
|
---|
441 | double h = g - d[l];
|
---|
442 | for (int i = l + 2; i < n; i++) {
|
---|
443 | d[i] -= h;
|
---|
444 | }
|
---|
445 | f = f + h;
|
---|
446 |
|
---|
447 | // Implicit QL transformation.
|
---|
448 |
|
---|
449 | p = d[m];
|
---|
450 | double c = 1.0;
|
---|
451 | double c2 = c;
|
---|
452 | double c3 = c;
|
---|
453 | double el1 = e[l + 1];
|
---|
454 | double s = 0.0;
|
---|
455 | double s2 = 0.0;
|
---|
456 | for (int i = m - 1; i >= l; i--) {
|
---|
457 | c3 = c2;
|
---|
458 | c2 = c;
|
---|
459 | s2 = s;
|
---|
460 | g = c * e[i];
|
---|
461 | h = c * p;
|
---|
462 | r = hypot(p, e[i]);
|
---|
463 | e[i + 1] = s * r;
|
---|
464 | s = e[i] / r;
|
---|
465 | c = p / r;
|
---|
466 | p = c * d[i] - s * g;
|
---|
467 | d[i + 1] = h + s * (c * g + s * d[i]);
|
---|
468 |
|
---|
469 | // Accumulate transformation.
|
---|
470 |
|
---|
471 | for (int k = 0; k < n; k++) {
|
---|
472 | h = V[k, i + 1];
|
---|
473 | V[k, i + 1] = s * V[k, i] + c * h;
|
---|
474 | V[k, i] = c * V[k, i] - s * h;
|
---|
475 | }
|
---|
476 | }
|
---|
477 | p = -s * s2 * c3 * el1 * e[l] / dl1;
|
---|
478 | e[l] = s * p;
|
---|
479 | d[l] = c * p;
|
---|
480 |
|
---|
481 | // Check for convergence.
|
---|
482 |
|
---|
483 | } while (Math.Abs(e[l]) > eps * tst1);
|
---|
484 | }
|
---|
485 | d[l] = d[l] + f;
|
---|
486 | e[l] = 0.0;
|
---|
487 | }
|
---|
488 |
|
---|
489 | // Sort eigenvalues and corresponding vectors.
|
---|
490 |
|
---|
491 | for (int i = 0; i < n - 1; i++) {
|
---|
492 | int k = i;
|
---|
493 | double p = d[i];
|
---|
494 | for (int j = i + 1; j < n; j++) {
|
---|
495 | if (d[j] < p) { // NH find smallest k>i
|
---|
496 | k = j;
|
---|
497 | p = d[j];
|
---|
498 | }
|
---|
499 | }
|
---|
500 | if (k != i) {
|
---|
501 | d[k] = d[i]; // swap k and i
|
---|
502 | d[i] = p;
|
---|
503 | for (int j = 0; j < n; j++) {
|
---|
504 | p = V[j, i];
|
---|
505 | V[j, i] = V[j, k];
|
---|
506 | V[j, k] = p;
|
---|
507 | }
|
---|
508 | }
|
---|
509 | }
|
---|
510 | }
|
---|
511 |
|
---|
512 | /** sqrt(a^2 + b^2) without under/overflow. **/
|
---|
513 | private double hypot(double a, double b) {
|
---|
514 | double r = 0;
|
---|
515 | if (Math.Abs(a) > Math.Abs(b)) {
|
---|
516 | r = b / a;
|
---|
517 | r = Math.Abs(a) * Math.Sqrt(1 + r * r);
|
---|
518 | } else if (b != 0) {
|
---|
519 | r = a / b;
|
---|
520 | r = Math.Abs(b) * Math.Sqrt(1 + r * r);
|
---|
521 | }
|
---|
522 | return r;
|
---|
523 | }
|
---|
524 | }
|
---|
525 | } |
---|