1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Analysis;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
29 | using HeuristicLab.Operators;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Algorithms.CMAEvolutionStrategy {
|
---|
35 | [Item("CMAAnalyzer", "Analyzes the development of strategy parameters and visualizes the performance of CMA-ES.")]
|
---|
36 | [StorableType("021CAE0C-9351-4C54-A953-3D815125B64C")]
|
---|
37 | public sealed class CMAAnalyzer : SingleSuccessorOperator, IAnalyzer, ISingleObjectiveOperator {
|
---|
38 |
|
---|
39 | public bool EnabledByDefault {
|
---|
40 | get { return false; }
|
---|
41 | }
|
---|
42 |
|
---|
43 | #region Parameter Properties
|
---|
44 | public ILookupParameter<CMAParameters> StrategyParametersParameter {
|
---|
45 | get { return (ILookupParameter<CMAParameters>)Parameters["StrategyParameters"]; }
|
---|
46 | }
|
---|
47 |
|
---|
48 | public ILookupParameter<RealVector> MeanParameter {
|
---|
49 | get { return (ILookupParameter<RealVector>)Parameters["Mean"]; }
|
---|
50 | }
|
---|
51 |
|
---|
52 | public IScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
53 | get { return (IScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
54 | }
|
---|
55 |
|
---|
56 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
57 | get { return (ILookupParameter<ResultCollection>)Parameters["Results"]; }
|
---|
58 | }
|
---|
59 | #endregion
|
---|
60 |
|
---|
61 | [StorableConstructor]
|
---|
62 | private CMAAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
63 | private CMAAnalyzer(CMAAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
64 | public CMAAnalyzer()
|
---|
65 | : base() {
|
---|
66 | Parameters.Add(new LookupParameter<CMAParameters>("StrategyParameters", "The CMA strategy parameters to be analyzed."));
|
---|
67 | Parameters.Add(new LookupParameter<RealVector>("Mean", "The mean real vector that is being optimized."));
|
---|
68 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The qualities of the solutions."));
|
---|
69 | Parameters.Add(new LookupParameter<ResultCollection>("Results", "The collection to store the results in."));
|
---|
70 | }
|
---|
71 |
|
---|
72 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
73 | return new CMAAnalyzer(this, cloner);
|
---|
74 | }
|
---|
75 |
|
---|
76 | public override IOperation Apply() {
|
---|
77 | var sp = StrategyParametersParameter.ActualValue;
|
---|
78 | var vector = MeanParameter.ActualValue;
|
---|
79 | var results = ResultsParameter.ActualValue;
|
---|
80 | var qualities = QualityParameter.ActualValue;
|
---|
81 | double min = qualities[0].Value, max = qualities[0].Value, avg = qualities[0].Value;
|
---|
82 | for (int i = 1; i < qualities.Length; i++) {
|
---|
83 | if (qualities[i].Value < min) min = qualities[i].Value;
|
---|
84 | if (qualities[i].Value > max) max = qualities[i].Value;
|
---|
85 | avg += qualities[i].Value;
|
---|
86 | }
|
---|
87 | avg /= qualities.Length;
|
---|
88 |
|
---|
89 | DataTable progress;
|
---|
90 | if (results.ContainsKey("Progress")) {
|
---|
91 | progress = (DataTable)results["Progress"].Value;
|
---|
92 | } else {
|
---|
93 | progress = new DataTable("Progress");
|
---|
94 | progress.Rows.Add(new DataRow("AxisRatio"));
|
---|
95 | progress.Rows.Add(new DataRow("Sigma"));
|
---|
96 | progress.Rows.Add(new DataRow("Min Quality"));
|
---|
97 | progress.Rows.Add(new DataRow("Max Quality"));
|
---|
98 | progress.Rows.Add(new DataRow("Avg Quality"));
|
---|
99 | progress.VisualProperties.YAxisLogScale = true;
|
---|
100 | results.Add(new Result("Progress", progress));
|
---|
101 | }
|
---|
102 | progress.Rows["AxisRatio"].Values.Add(sp.AxisRatio);
|
---|
103 | progress.Rows["Sigma"].Values.Add(sp.Sigma);
|
---|
104 | progress.Rows["Min Quality"].Values.Add(min);
|
---|
105 | progress.Rows["Max Quality"].Values.Add(max);
|
---|
106 | progress.Rows["Avg Quality"].Values.Add(avg);
|
---|
107 |
|
---|
108 | DataTable scaling;
|
---|
109 | if (results.ContainsKey("Scaling")) {
|
---|
110 | scaling = (DataTable)results["Scaling"].Value;
|
---|
111 | } else {
|
---|
112 | scaling = new DataTable("Scaling");
|
---|
113 | scaling.VisualProperties.YAxisLogScale = true;
|
---|
114 | for (int i = 0; i < sp.C.GetLength(0); i++)
|
---|
115 | scaling.Rows.Add(new DataRow("Axis" + i.ToString()));
|
---|
116 | results.Add(new Result("Scaling", scaling));
|
---|
117 | }
|
---|
118 | for (int i = 0; i < sp.C.GetLength(0); i++)
|
---|
119 | scaling.Rows["Axis" + i.ToString()].Values.Add(sp.D[i]);
|
---|
120 |
|
---|
121 | DataTable realVector;
|
---|
122 | if (results.ContainsKey("Object Variables")) {
|
---|
123 | realVector = (DataTable)results["Object Variables"].Value;
|
---|
124 | } else {
|
---|
125 | realVector = new DataTable("Object Variables");
|
---|
126 | for (int i = 0; i < vector.Length; i++)
|
---|
127 | realVector.Rows.Add(new DataRow("Axis" + i.ToString()));
|
---|
128 | results.Add(new Result("Object Variables", realVector));
|
---|
129 | }
|
---|
130 | for (int i = 0; i < vector.Length; i++)
|
---|
131 | realVector.Rows["Axis" + i.ToString()].Values.Add(vector[i]);
|
---|
132 |
|
---|
133 | DataTable stdDevs;
|
---|
134 | if (results.ContainsKey("Standard Deviations")) {
|
---|
135 | stdDevs = (DataTable)results["Standard Deviations"].Value;
|
---|
136 | } else {
|
---|
137 | stdDevs = new DataTable("Standard Deviations");
|
---|
138 | stdDevs.VisualProperties.YAxisLogScale = true;
|
---|
139 | stdDevs.Rows.Add(new DataRow("MinStdDev"));
|
---|
140 | stdDevs.Rows.Add(new DataRow("MaxStdDev"));
|
---|
141 | for (int i = 0; i < vector.Length; i++)
|
---|
142 | stdDevs.Rows.Add(new DataRow("Axis" + i.ToString()));
|
---|
143 | results.Add(new Result("Standard Deviations", stdDevs));
|
---|
144 | }
|
---|
145 | for (int i = 0; i < vector.Length; i++)
|
---|
146 | stdDevs.Rows["Axis" + i.ToString()].Values.Add(Math.Sqrt(sp.C[i, i]));
|
---|
147 | stdDevs.Rows["MinStdDev"].Values.Add(sp.D.Min() * sp.Sigma);
|
---|
148 | stdDevs.Rows["MaxStdDev"].Values.Add(sp.D.Max() * sp.Sigma);
|
---|
149 |
|
---|
150 | return base.Apply();
|
---|
151 | }
|
---|
152 | }
|
---|
153 | }
|
---|