1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Modeling {
|
---|
29 | public abstract class ModelingResultCalculators {
|
---|
30 | private enum DatasetPart { Training, Validation, Test };
|
---|
31 |
|
---|
32 | private static readonly Dictionary<ModelingResult, Func<double[,], double>> ClassificationModelingResults;
|
---|
33 | private static readonly Dictionary<ModelingResult, Func<double[,], double>> RegressionModelingResults;
|
---|
34 | private static readonly Dictionary<ModelingResult, Func<double[,], double>> TimeSeriesPrognosisModelingResults;
|
---|
35 | private static readonly Dictionary<ModelingResult, IOperator> ClassificationModelingResultEvaluators;
|
---|
36 | private static readonly Dictionary<ModelingResult, IOperator> RegressionModelingResultEvaluators;
|
---|
37 | private static readonly Dictionary<ModelingResult, IOperator> TimeSeriesPrognosisModelingResultEvaluators;
|
---|
38 |
|
---|
39 | private static readonly Dictionary<Type, IEnumerable<ModelingResult>> regressionResults =
|
---|
40 | new Dictionary<Type, IEnumerable<ModelingResult>>() {
|
---|
41 | { typeof(SimpleMSEEvaluator),
|
---|
42 | new ModelingResult[] {
|
---|
43 | ModelingResult.TrainingMeanSquaredError,
|
---|
44 | ModelingResult.ValidationMeanSquaredError,
|
---|
45 | ModelingResult.TestMeanSquaredError
|
---|
46 | }},
|
---|
47 | { typeof(SimpleNMSEEvaluator),
|
---|
48 | new ModelingResult[] {
|
---|
49 | ModelingResult.TrainingNormalizedMeanSquaredError,
|
---|
50 | ModelingResult.ValidationNormalizedMeanSquaredError,
|
---|
51 | ModelingResult.TestNormalizedMeanSquaredError
|
---|
52 | }
|
---|
53 | },
|
---|
54 | { typeof(SimpleR2Evaluator),
|
---|
55 | new ModelingResult[] {
|
---|
56 | ModelingResult.TrainingCoefficientOfDetermination,
|
---|
57 | ModelingResult.ValidationCoefficientOfDetermination,
|
---|
58 | ModelingResult.TestCoefficientOfDetermination
|
---|
59 | }
|
---|
60 | },
|
---|
61 | { typeof(SimplePearsonCorrelationCoefficientEvaluator),
|
---|
62 | new ModelingResult[] {
|
---|
63 | ModelingResult.TrainingPearsonsCorrelationCoefficient,
|
---|
64 | ModelingResult.ValidationPearsonCorrelationCoefficient,
|
---|
65 | ModelingResult.TestPearsonCorrelationCoefficient
|
---|
66 | }
|
---|
67 | },
|
---|
68 | { typeof(SimpleStableCorrelationCoefficientEvaluator),
|
---|
69 | new ModelingResult[] {
|
---|
70 | ModelingResult.TrainingStablePearsonsCorrelationCoefficient,
|
---|
71 | ModelingResult.ValidationStablePearsonCorrelationCoefficient,
|
---|
72 | ModelingResult.TestStablePearsonCorrelationCoefficient
|
---|
73 | }
|
---|
74 | },
|
---|
75 | { typeof(SimpleSpearmansRankCorrelationCoefficientEvaluator),
|
---|
76 | new ModelingResult[] {
|
---|
77 | ModelingResult.TrainingSpearmansRankCorrelationCoefficient,
|
---|
78 | ModelingResult.ValidationSpearmansRankCorrelationCoefficient,
|
---|
79 | ModelingResult.TestSpearmansRankCorrelationCoefficient
|
---|
80 | }
|
---|
81 | },
|
---|
82 | { typeof(SimpleVarianceAccountedForEvaluator),
|
---|
83 | new ModelingResult[] {
|
---|
84 | ModelingResult.TrainingVarianceAccountedFor,
|
---|
85 | ModelingResult.ValidationVarianceAccountedFor,
|
---|
86 | ModelingResult.TestVarianceAccountedFor
|
---|
87 | }
|
---|
88 | },
|
---|
89 | { typeof(SimpleMeanAbsolutePercentageErrorEvaluator),
|
---|
90 | new ModelingResult[] {
|
---|
91 | ModelingResult.TrainingMeanAbsolutePercentageError,
|
---|
92 | ModelingResult.ValidationMeanAbsolutePercentageError,
|
---|
93 | ModelingResult.TestMeanAbsolutePercentageError
|
---|
94 | }
|
---|
95 | },
|
---|
96 | { typeof(SimpleMeanAbsolutePercentageOfRangeErrorEvaluator),
|
---|
97 | new ModelingResult[] {
|
---|
98 | ModelingResult.TrainingMeanAbsolutePercentageOfRangeError,
|
---|
99 | ModelingResult.ValidationMeanAbsolutePercentageOfRangeError,
|
---|
100 | ModelingResult.TestMeanAbsolutePercentageOfRangeError
|
---|
101 | }
|
---|
102 | }
|
---|
103 | };
|
---|
104 |
|
---|
105 | private static readonly Dictionary<Type, IEnumerable<ModelingResult>> timeSeriesResults =
|
---|
106 | new Dictionary<Type, IEnumerable<ModelingResult>>() {
|
---|
107 | { typeof(SimpleTheilInequalityCoefficientEvaluator),
|
---|
108 | new ModelingResult[] {
|
---|
109 | ModelingResult.TrainingTheilInequality,
|
---|
110 | ModelingResult.ValidationTheilInequality,
|
---|
111 | ModelingResult.TestTheilInequality
|
---|
112 | }
|
---|
113 | },
|
---|
114 | { typeof(SimpleDirectionalSymmetryEvaluator),
|
---|
115 | new ModelingResult[] {
|
---|
116 | ModelingResult.TrainingDirectionalSymmetry,
|
---|
117 | ModelingResult.ValidationDirectionalSymmetry,
|
---|
118 | ModelingResult.TestDirectionalSymmetry
|
---|
119 | }
|
---|
120 | },
|
---|
121 | { typeof(SimpleWeightedDirectionalSymmetryEvaluator),
|
---|
122 | new ModelingResult[] {
|
---|
123 | ModelingResult.TrainingWeightedDirectionalSymmetry,
|
---|
124 | ModelingResult.ValidationWeightedDirectionalSymmetry,
|
---|
125 | ModelingResult.TestWeightedDirectionalSymmetry
|
---|
126 | }
|
---|
127 | }
|
---|
128 | };
|
---|
129 |
|
---|
130 | private static readonly Dictionary<Type, IEnumerable<ModelingResult>> classificationResults =
|
---|
131 | new Dictionary<Type, IEnumerable<ModelingResult>>() {
|
---|
132 | { typeof(SimpleAccuracyEvaluator),
|
---|
133 | new ModelingResult[] {
|
---|
134 | ModelingResult.TrainingAccuracy,
|
---|
135 | ModelingResult.ValidationAccuracy,
|
---|
136 | ModelingResult.TestAccuracy
|
---|
137 | }
|
---|
138 | }
|
---|
139 | };
|
---|
140 |
|
---|
141 |
|
---|
142 | static ModelingResultCalculators() {
|
---|
143 | RegressionModelingResults = new Dictionary<ModelingResult, Func<double[,], double>>();
|
---|
144 | ClassificationModelingResults = new Dictionary<ModelingResult, Func<double[,], double>>();
|
---|
145 | TimeSeriesPrognosisModelingResults = new Dictionary<ModelingResult, Func<double[,], double>>();
|
---|
146 |
|
---|
147 | //Mean squared errors
|
---|
148 | RegressionModelingResults[ModelingResult.TrainingMeanSquaredError] = SimpleMSEEvaluator.Calculate;
|
---|
149 | RegressionModelingResults[ModelingResult.ValidationMeanSquaredError] = SimpleMSEEvaluator.Calculate;
|
---|
150 | RegressionModelingResults[ModelingResult.TestMeanSquaredError] = SimpleMSEEvaluator.Calculate;
|
---|
151 |
|
---|
152 | //Normalized mean squared errors
|
---|
153 | RegressionModelingResults[ModelingResult.TrainingNormalizedMeanSquaredError] = SimpleNMSEEvaluator.Calculate;
|
---|
154 | RegressionModelingResults[ModelingResult.ValidationNormalizedMeanSquaredError] = SimpleNMSEEvaluator.Calculate;
|
---|
155 | RegressionModelingResults[ModelingResult.TestNormalizedMeanSquaredError] = SimpleNMSEEvaluator.Calculate;
|
---|
156 |
|
---|
157 | //Mean absolute percentage error
|
---|
158 | RegressionModelingResults[ModelingResult.TrainingMeanAbsolutePercentageError] = SimpleMeanAbsolutePercentageErrorEvaluator.Calculate;
|
---|
159 | RegressionModelingResults[ModelingResult.ValidationMeanAbsolutePercentageError] = SimpleMeanAbsolutePercentageErrorEvaluator.Calculate;
|
---|
160 | RegressionModelingResults[ModelingResult.TestMeanAbsolutePercentageError] = SimpleMeanAbsolutePercentageErrorEvaluator.Calculate;
|
---|
161 |
|
---|
162 | //Mean absolute percentage of range error
|
---|
163 | RegressionModelingResults[ModelingResult.TrainingMeanAbsolutePercentageOfRangeError] = SimpleMeanAbsolutePercentageOfRangeErrorEvaluator.Calculate;
|
---|
164 | RegressionModelingResults[ModelingResult.ValidationMeanAbsolutePercentageOfRangeError] = SimpleMeanAbsolutePercentageOfRangeErrorEvaluator.Calculate;
|
---|
165 | RegressionModelingResults[ModelingResult.TestMeanAbsolutePercentageOfRangeError] = SimpleMeanAbsolutePercentageOfRangeErrorEvaluator.Calculate;
|
---|
166 |
|
---|
167 | //Coefficient of determination
|
---|
168 | RegressionModelingResults[ModelingResult.TrainingCoefficientOfDetermination] = SimpleR2Evaluator.Calculate;
|
---|
169 | RegressionModelingResults[ModelingResult.ValidationCoefficientOfDetermination] = SimpleR2Evaluator.Calculate;
|
---|
170 | RegressionModelingResults[ModelingResult.TestCoefficientOfDetermination] = SimpleR2Evaluator.Calculate;
|
---|
171 |
|
---|
172 | //Pearson Correlation Coefficient
|
---|
173 | RegressionModelingResults[ModelingResult.TrainingPearsonsCorrelationCoefficient] = SimplePearsonCorrelationCoefficientEvaluator.Calculate;
|
---|
174 | RegressionModelingResults[ModelingResult.ValidationPearsonCorrelationCoefficient] = SimplePearsonCorrelationCoefficientEvaluator.Calculate;
|
---|
175 | RegressionModelingResults[ModelingResult.TestPearsonCorrelationCoefficient] = SimplePearsonCorrelationCoefficientEvaluator.Calculate;
|
---|
176 |
|
---|
177 | //Stable Pearson Correlation Coefficient
|
---|
178 | RegressionModelingResults[ModelingResult.TrainingStablePearsonsCorrelationCoefficient] = SimpleStableCorrelationCoefficientEvaluator.Calculate;
|
---|
179 | RegressionModelingResults[ModelingResult.ValidationStablePearsonCorrelationCoefficient] = SimpleStableCorrelationCoefficientEvaluator.Calculate;
|
---|
180 | RegressionModelingResults[ModelingResult.TestStablePearsonCorrelationCoefficient] = SimpleStableCorrelationCoefficientEvaluator.Calculate;
|
---|
181 |
|
---|
182 | //Spearman's rank correlation coefficient
|
---|
183 | RegressionModelingResults[ModelingResult.TrainingSpearmansRankCorrelationCoefficient] = SimpleSpearmansRankCorrelationCoefficientEvaluator.Calculate;
|
---|
184 | RegressionModelingResults[ModelingResult.ValidationSpearmansRankCorrelationCoefficient] = SimpleSpearmansRankCorrelationCoefficientEvaluator.Calculate;
|
---|
185 | RegressionModelingResults[ModelingResult.TestSpearmansRankCorrelationCoefficient] = SimpleSpearmansRankCorrelationCoefficientEvaluator.Calculate;
|
---|
186 |
|
---|
187 | //Variance accounted for
|
---|
188 | RegressionModelingResults[ModelingResult.TrainingVarianceAccountedFor] = SimpleVarianceAccountedForEvaluator.Calculate;
|
---|
189 | RegressionModelingResults[ModelingResult.ValidationVarianceAccountedFor] = SimpleVarianceAccountedForEvaluator.Calculate;
|
---|
190 | RegressionModelingResults[ModelingResult.TestVarianceAccountedFor] = SimpleVarianceAccountedForEvaluator.Calculate;
|
---|
191 |
|
---|
192 | //Accuracy
|
---|
193 | ClassificationModelingResults[ModelingResult.TrainingAccuracy] = SimpleAccuracyEvaluator.Calculate;
|
---|
194 | ClassificationModelingResults[ModelingResult.ValidationAccuracy] = SimpleAccuracyEvaluator.Calculate;
|
---|
195 | ClassificationModelingResults[ModelingResult.TestAccuracy] = SimpleAccuracyEvaluator.Calculate;
|
---|
196 |
|
---|
197 | //Theil inequality
|
---|
198 | TimeSeriesPrognosisModelingResults[ModelingResult.TrainingTheilInequality] = SimpleTheilInequalityCoefficientEvaluator.Calculate;
|
---|
199 | TimeSeriesPrognosisModelingResults[ModelingResult.ValidationTheilInequality] = SimpleTheilInequalityCoefficientEvaluator.Calculate;
|
---|
200 | TimeSeriesPrognosisModelingResults[ModelingResult.TestTheilInequality] = SimpleTheilInequalityCoefficientEvaluator.Calculate;
|
---|
201 |
|
---|
202 | //Directional symmetry
|
---|
203 | TimeSeriesPrognosisModelingResults[ModelingResult.TrainingDirectionalSymmetry] = SimpleDirectionalSymmetryEvaluator.Calculate;
|
---|
204 | TimeSeriesPrognosisModelingResults[ModelingResult.ValidationDirectionalSymmetry] = SimpleDirectionalSymmetryEvaluator.Calculate;
|
---|
205 | TimeSeriesPrognosisModelingResults[ModelingResult.TestDirectionalSymmetry] = SimpleDirectionalSymmetryEvaluator.Calculate;
|
---|
206 |
|
---|
207 | //Weighted directional symmetry
|
---|
208 | TimeSeriesPrognosisModelingResults[ModelingResult.TrainingWeightedDirectionalSymmetry] = SimpleWeightedDirectionalSymmetryEvaluator.Calculate;
|
---|
209 | TimeSeriesPrognosisModelingResults[ModelingResult.ValidationWeightedDirectionalSymmetry] = SimpleWeightedDirectionalSymmetryEvaluator.Calculate;
|
---|
210 | TimeSeriesPrognosisModelingResults[ModelingResult.TestWeightedDirectionalSymmetry] = SimpleWeightedDirectionalSymmetryEvaluator.Calculate;
|
---|
211 |
|
---|
212 | #region result evaluators
|
---|
213 |
|
---|
214 | RegressionModelingResultEvaluators = new Dictionary<ModelingResult, IOperator>();
|
---|
215 | foreach (Type evaluatorT in regressionResults.Keys) {
|
---|
216 | foreach (ModelingResult r in regressionResults[evaluatorT]) {
|
---|
217 | RegressionModelingResultEvaluators[r] = CreateEvaluator(evaluatorT, r);
|
---|
218 | }
|
---|
219 | }
|
---|
220 |
|
---|
221 | timeSeriesResults = CombineDictionaries(regressionResults, timeSeriesResults);
|
---|
222 | TimeSeriesPrognosisModelingResultEvaluators = new Dictionary<ModelingResult, IOperator>();
|
---|
223 | foreach (Type evaluatorT in timeSeriesResults.Keys) {
|
---|
224 | foreach (ModelingResult r in timeSeriesResults[evaluatorT]) {
|
---|
225 | TimeSeriesPrognosisModelingResultEvaluators[r] = CreateEvaluator(evaluatorT, r);
|
---|
226 | }
|
---|
227 | }
|
---|
228 |
|
---|
229 | classificationResults = CombineDictionaries(regressionResults, classificationResults);
|
---|
230 | ClassificationModelingResultEvaluators = new Dictionary<ModelingResult, IOperator>();
|
---|
231 | foreach (Type evaluatorT in classificationResults.Keys) {
|
---|
232 | foreach (ModelingResult r in classificationResults[evaluatorT]) {
|
---|
233 | ClassificationModelingResultEvaluators[r] = CreateEvaluator(evaluatorT, r);
|
---|
234 | }
|
---|
235 | }
|
---|
236 |
|
---|
237 | #endregion
|
---|
238 | }
|
---|
239 |
|
---|
240 | public static Dictionary<ModelingResult, Func<double[,], double>> GetModelingResult(ModelType modelType) {
|
---|
241 | switch (modelType) {
|
---|
242 | case ModelType.Regression:
|
---|
243 | return CombineDictionaries(RegressionModelingResults, new Dictionary<ModelingResult, Func<double[,], double>>());
|
---|
244 | case ModelType.Classification:
|
---|
245 | return CombineDictionaries(RegressionModelingResults, ClassificationModelingResults);
|
---|
246 | case ModelType.TimeSeriesPrognosis:
|
---|
247 | return CombineDictionaries(RegressionModelingResults, TimeSeriesPrognosisModelingResults);
|
---|
248 | default:
|
---|
249 | throw new ArgumentException("Modeling result mapping for ModelType " + modelType + " not defined.");
|
---|
250 | }
|
---|
251 | }
|
---|
252 |
|
---|
253 | public static Func<double[,], double> GetModelingResultCalculator(ModelingResult modelingResult) {
|
---|
254 | if (RegressionModelingResults.ContainsKey(modelingResult))
|
---|
255 | return RegressionModelingResults[modelingResult];
|
---|
256 | else if (ClassificationModelingResults.ContainsKey(modelingResult))
|
---|
257 | return ClassificationModelingResults[modelingResult];
|
---|
258 | else if (TimeSeriesPrognosisModelingResults.ContainsKey(modelingResult))
|
---|
259 | return TimeSeriesPrognosisModelingResults[modelingResult];
|
---|
260 | else
|
---|
261 | throw new ArgumentException("Calculator for modeling result " + modelingResult + " not defined.");
|
---|
262 | }
|
---|
263 |
|
---|
264 | public static IOperator CreateModelingResultEvaluator(ModelingResult modelingResult) {
|
---|
265 | IOperator opTemplate = null;
|
---|
266 | if (RegressionModelingResultEvaluators.ContainsKey(modelingResult))
|
---|
267 | opTemplate = RegressionModelingResultEvaluators[modelingResult];
|
---|
268 | else if (ClassificationModelingResultEvaluators.ContainsKey(modelingResult))
|
---|
269 | opTemplate = ClassificationModelingResultEvaluators[modelingResult];
|
---|
270 | else if (TimeSeriesPrognosisModelingResultEvaluators.ContainsKey(modelingResult))
|
---|
271 | opTemplate = TimeSeriesPrognosisModelingResultEvaluators[modelingResult];
|
---|
272 | else
|
---|
273 | throw new ArgumentException("Evaluator for modeling result " + modelingResult + " not defined.");
|
---|
274 | return (IOperator)opTemplate.Clone();
|
---|
275 | }
|
---|
276 |
|
---|
277 | private static IOperator CreateEvaluator(Type evaluatorType, ModelingResult result) {
|
---|
278 | SimpleEvaluatorBase evaluator = (SimpleEvaluatorBase)Activator.CreateInstance(evaluatorType);
|
---|
279 | evaluator.GetVariableInfo("Values").ActualName = GetDatasetPart(result) + "Values";
|
---|
280 | evaluator.GetVariableInfo(evaluator.OutputVariableName).ActualName = result.ToString();
|
---|
281 | return evaluator;
|
---|
282 | }
|
---|
283 |
|
---|
284 | private static DatasetPart GetDatasetPart(ModelingResult result) {
|
---|
285 | if (result.ToString().StartsWith("Training")) return DatasetPart.Training;
|
---|
286 | else if (result.ToString().StartsWith("Validation")) return DatasetPart.Validation;
|
---|
287 | else if (result.ToString().StartsWith("Test")) return DatasetPart.Test;
|
---|
288 | else throw new ArgumentException("Can't determine dataset part of modeling result " + result + ".");
|
---|
289 | }
|
---|
290 |
|
---|
291 | private static Dictionary<T1, T2> CombineDictionaries<T1, T2>(
|
---|
292 | Dictionary<T1, T2> x,
|
---|
293 | Dictionary<T1, T2> y) {
|
---|
294 | Dictionary<T1, T2> result = new Dictionary<T1, T2>(x);
|
---|
295 | return x.Union(y).ToDictionary<KeyValuePair<T1, T2>, T1, T2>(p => p.Key, p => p.Value);
|
---|
296 | }
|
---|
297 | }
|
---|
298 | }
|
---|