Free cookie consent management tool by TermsFeed Policy Generator

source: branches/Persistence Test/HeuristicLab.GP.StructureIdentification/3.4/Evaluators/GPEvaluatorBase.cs @ 3962

Last change on this file since 3962 was 2130, checked in by gkronber, 16 years ago
  • Removed "AutoRegressive" parameter for GP completely. User is responsible to set allowed features correctly (including the target variable for auto regression)
  • Setting allowed features correctly in the CEDMA dispatcher (this fixes the problem of incorrect input variables in SVM)

#683 (nu-SVR engine doesn't filter allowed features to remove the target variable)

File size: 4.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Operators;
29using HeuristicLab.DataAnalysis;
30
31namespace HeuristicLab.GP.StructureIdentification {
32  public abstract class GPEvaluatorBase : OperatorBase {
33    public GPEvaluatorBase()
34      : base() {
35      AddVariableInfo(new VariableInfo("TreeEvaluator", "The evaluator that should be used to evaluate the expression tree", typeof(ITreeEvaluator), VariableKind.In));
36      AddVariableInfo(new VariableInfo("FunctionTree", "The function tree that should be evaluated", typeof(IFunctionTree), VariableKind.In));
37      AddVariableInfo(new VariableInfo("TreeSize", "Size (number of nodes) of the tree to evaluate", typeof(IntData), VariableKind.In));
38      AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
39      AddVariableInfo(new VariableInfo("TargetVariable", "Index of the column of the dataset that holds the target variable", typeof(IntData), VariableKind.In));
40      AddVariableInfo(new VariableInfo("PunishmentFactor", "Punishment factor for invalid estimations", typeof(DoubleData), VariableKind.In));
41      AddVariableInfo(new VariableInfo("TotalEvaluatedNodes", "Number of evaluated nodes", typeof(DoubleData), VariableKind.In | VariableKind.Out));
42      AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
43      AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
44      AddVariableInfo(new VariableInfo("UseEstimatedTargetValue", "Wether to use the original (measured) or the estimated (calculated) value for the target variable for autoregressive modelling", typeof(BoolData), VariableKind.In));
45    }
46
47    public override IOperation Apply(IScope scope) {
48      // get all variable values
49      int targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data;
50      Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
51      IFunctionTree functionTree = GetVariableValue<IFunctionTree>("FunctionTree", scope, true);
52      double punishmentFactor = GetVariableValue<DoubleData>("PunishmentFactor", scope, true).Data;
53      int treeSize = scope.GetVariableValue<IntData>("TreeSize", false).Data;
54      double totalEvaluatedNodes = scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data;
55      int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
56      int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
57      bool useEstimatedValues = GetVariableValue<BoolData>("UseEstimatedTargetValue", scope, true).Data;
58      ITreeEvaluator evaluator = GetVariableValue<ITreeEvaluator>("TreeEvaluator", scope, true);
59      evaluator.PrepareForEvaluation(functionTree);
60
61      double[] backupValues = null;
62      // prepare for autoregressive modelling by saving the original values of the target-variable to a backup array
63      if (useEstimatedValues &&
64        (backupValues == null || backupValues.Length != end - start)) {
65        backupValues = new double[end - start];
66        for (int i = start; i < end; i++) {
67          backupValues[i - start] = dataset.GetValue(i, targetVariable);
68        }
69      }
70
71      Evaluate(scope, evaluator, dataset, targetVariable, start, end, useEstimatedValues);
72
73      // restore the values of the target variable from the backup array if necessary
74      if (useEstimatedValues) {
75        for (int i = start; i < end; i++) {
76          dataset.SetValue(i, targetVariable, backupValues[i - start]);
77        }
78      }
79
80      // update the value of total evaluated nodes
81      scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + treeSize * (end - start);
82      return null;
83    }
84
85    public abstract void Evaluate(IScope scope, ITreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues);
86  }
87}
Note: See TracBrowser for help on using the repository browser.