1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.DataAnalysis;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.GP.StructureIdentification.Classification {
|
---|
28 | public abstract class GPClassificationEvaluatorBase : GPEvaluatorBase {
|
---|
29 |
|
---|
30 | public GPClassificationEvaluatorBase()
|
---|
31 | : base() {
|
---|
32 | AddVariableInfo(new VariableInfo("TargetClassValues", "The original class values of target variable (for instance negative=0 and positive=1).", typeof(ItemList<DoubleData>), VariableKind.In));
|
---|
33 | }
|
---|
34 |
|
---|
35 | public override void Evaluate(IScope scope, ITreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {
|
---|
36 |
|
---|
37 | ItemList<DoubleData> classes = GetVariableValue<ItemList<DoubleData>>("TargetClassValues", scope, true);
|
---|
38 | double[] classesArr = new double[classes.Count];
|
---|
39 | for(int i = 0; i < classesArr.Length; i++) classesArr[i] = classes[i].Data;
|
---|
40 | Array.Sort(classesArr);
|
---|
41 | double[] thresholds = new double[classes.Count - 1];
|
---|
42 | for(int i = 0; i < classesArr.Length - 1; i++) {
|
---|
43 | thresholds[i] = (classesArr[i] + classesArr[i + 1]) / 2.0;
|
---|
44 | }
|
---|
45 |
|
---|
46 | Evaluate(scope, evaluator, dataset, targetVariable, classesArr, thresholds, start, end);
|
---|
47 | }
|
---|
48 |
|
---|
49 | public abstract void Evaluate(IScope scope, ITreeEvaluator evaluator, Dataset dataset, int targetVariable, double[] classes, double[] thresholds, int start, int end);
|
---|
50 | }
|
---|
51 | }
|
---|