1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Globalization;
|
---|
4 | using System.Linq;
|
---|
5 | using System.Threading.Tasks;
|
---|
6 | using HeuristicLab.Algorithms.MemPR.Permutation;
|
---|
7 | using HeuristicLab.PluginInfrastructure;
|
---|
8 | using HeuristicLab.Problems.Instances;
|
---|
9 | using HeuristicLab.Problems.Instances.QAPLIB;
|
---|
10 | using HeuristicLab.Problems.QuadraticAssignment;
|
---|
11 | using HeuristicLab.Random;
|
---|
12 |
|
---|
13 | namespace ProblemInstanceIdentifier {
|
---|
14 | class Program {
|
---|
15 | private static HashSet<string> selectedInstances = new HashSet<string>() {
|
---|
16 | "bur26a", "chr25a", "dre24", "els19", "esc32a", "had20", "kra32", "lipa30a", "lipa30b",
|
---|
17 | "nug30", "rou20", "scr20", "sko42", "ste36a", "tai25a", "tai25b", "tho30", "wil50",
|
---|
18 | "RAND-S-6x6-36-25-AFFY-00_rand_rand_bl", "RAND-S-6x6-36-25-AFFY-00_rand_rand_ci"
|
---|
19 | };
|
---|
20 | static void Main(string[] args) {
|
---|
21 | var instances = Get20DifferentClasses();
|
---|
22 | //var instances = GetSomeRandomInstances(50);
|
---|
23 |
|
---|
24 | /*var classes = instances.Select(InstanceDescriptor.FromProblemOnly).GroupBy(x => x.Cls);
|
---|
25 | foreach (var cls in classes.OrderBy(x => x.Key)) {
|
---|
26 | Console.WriteLine("{0};{1}", cls.Key, cls.Count());
|
---|
27 | }*/
|
---|
28 |
|
---|
29 | var prExplorer = new PathRelinkingExplorer() {
|
---|
30 | LocalOptima = false,
|
---|
31 | Paths = 200
|
---|
32 | };
|
---|
33 | var prLocalExplorer = new PathRelinkingExplorer() {
|
---|
34 | LocalOptima = true,
|
---|
35 | Paths = 200
|
---|
36 | };
|
---|
37 | var memPrExplorer = new MemPRExplorer() {
|
---|
38 | IncludeLocalSearch = false,
|
---|
39 | Seconds = 10
|
---|
40 | };
|
---|
41 |
|
---|
42 | var training = GenerateData(instances, prExplorer, parallel:true);
|
---|
43 | var standardizer = InstancesStandardizer.CreateAndApply(training);
|
---|
44 | var test = GenerateData(instances, prExplorer, parallel: false);
|
---|
45 | standardizer.Apply(test);
|
---|
46 | PrintMatchResult(Compare(training, test));
|
---|
47 |
|
---|
48 | ExploreMatching(instances, new [] { prLocalExplorer }, new [] { memPrExplorer });
|
---|
49 | }
|
---|
50 |
|
---|
51 | private static List<QuadraticAssignmentProblem> GetSomeRandomInstances(int totalInstances) {
|
---|
52 | var sync = new object();
|
---|
53 | var provider = new OneSizeInstanceProvider();
|
---|
54 | var instances = new List<QuadraticAssignmentProblem>();
|
---|
55 | var random = new FastRandom(0);
|
---|
56 | Parallel.ForEach(provider.GetDataDescriptors().Shuffle(random), desc => {
|
---|
57 | var qapData = provider.LoadData(desc);
|
---|
58 | if (qapData.Dimension < 25) return;
|
---|
59 | if (instances.Count >= totalInstances) return;
|
---|
60 | var qap = new QuadraticAssignmentProblem();
|
---|
61 | qap.Load(qapData);
|
---|
62 | lock (sync) {
|
---|
63 | if (instances.Count >= totalInstances) return;
|
---|
64 | instances.Add(qap);
|
---|
65 | }
|
---|
66 | });
|
---|
67 | return instances;
|
---|
68 | }
|
---|
69 |
|
---|
70 | private static List<QuadraticAssignmentProblem> Get20DifferentClasses() {
|
---|
71 | var sync = new object();
|
---|
72 |
|
---|
73 | var qapProviders = ApplicationManager.Manager.GetInstances<ProblemInstanceProvider<QAPData>>().ToList();
|
---|
74 | var instances = new List<QuadraticAssignmentProblem>();
|
---|
75 | foreach (var provider in qapProviders) {
|
---|
76 | if (provider is TaillardQAPInstanceProvider) continue;
|
---|
77 | Parallel.ForEach(provider.GetDataDescriptors(), desc => {
|
---|
78 | if (!selectedInstances.Contains(desc.Name)) return;
|
---|
79 | //if (desc.Name == "esc16f") return;
|
---|
80 | var qapData = provider.LoadData(desc);
|
---|
81 | //if (qapData.Dimension < 15 || qapData.Dimension > 150) return;
|
---|
82 | var qap = new QuadraticAssignmentProblem();
|
---|
83 | qap.Load(qapData);
|
---|
84 | lock (sync) {
|
---|
85 | instances.Add(qap);
|
---|
86 | }
|
---|
87 | });
|
---|
88 | }
|
---|
89 | return instances;
|
---|
90 | }
|
---|
91 |
|
---|
92 | private static List<InstanceDescriptor> GenerateData(List<QuadraticAssignmentProblem> instances, InstanceExplorer explorer, bool parallel = false) {
|
---|
93 | var sync = new object();
|
---|
94 | var data = new List<InstanceDescriptor>();
|
---|
95 | Action<QuadraticAssignmentProblem> body = (qap) => {
|
---|
96 | var instance = explorer.Explore(qap);
|
---|
97 | if (instance == null) return;
|
---|
98 | lock (sync) {
|
---|
99 | data.Add(instance);
|
---|
100 | }
|
---|
101 | };
|
---|
102 | if (parallel) {
|
---|
103 | Parallel.ForEach(instances, body);
|
---|
104 | } else {
|
---|
105 | foreach (var qap in instances) body(qap);
|
---|
106 | }
|
---|
107 | return data;
|
---|
108 | }
|
---|
109 |
|
---|
110 | private static MatchResult Compare(List<InstanceDescriptor> training, List<InstanceDescriptor> test) {
|
---|
111 | int exactCount = 0, clsCount = 0, totalCount = 0;
|
---|
112 | int exactRank = 0, clsRank = 0;
|
---|
113 | foreach (var e in test) {
|
---|
114 | var ordered = training.OrderBy(x => x.CalculateSimilarity(e)).ToList();
|
---|
115 | var bestMatch = ordered.First();
|
---|
116 | if (bestMatch.Cls == e.Cls) clsCount++;
|
---|
117 | if (bestMatch.Name == e.Name) exactCount++;
|
---|
118 | var r = ordered.FindIndex((id) => id.Name == e.Name);
|
---|
119 | if (r < 0) continue;
|
---|
120 | totalCount++;
|
---|
121 | exactRank += r + 1;
|
---|
122 | clsRank += ordered.FindIndex((id) => id.Cls == e.Cls) + 1;
|
---|
123 | }
|
---|
124 |
|
---|
125 | return new MatchResult() {
|
---|
126 | ExactCount = exactCount,
|
---|
127 | ClsCount = clsCount,
|
---|
128 | TotalCount = totalCount,
|
---|
129 | ExactAverageRank = exactRank / (double)totalCount,
|
---|
130 | ClsAverageRank = clsRank / (double)totalCount
|
---|
131 | };
|
---|
132 | }
|
---|
133 |
|
---|
134 | private static void PrintMatchResult(MatchResult result) {
|
---|
135 | Console.WriteLine("{0}\t{1}\t{2}\t{3:F2}\t{4:F2}",
|
---|
136 | result.ExactCount, result.ClsCount, result.TotalCount,
|
---|
137 | result.ExactAverageRank, result.ClsAverageRank);
|
---|
138 | }
|
---|
139 |
|
---|
140 | private static void PrintData(List<InstanceDescriptor> instances) {
|
---|
141 | using (var iter = instances.GetEnumerator()) {
|
---|
142 | if (!iter.MoveNext()) return;
|
---|
143 | Console.WriteLine(string.Join(";", new[] {"Name", "Cls", "Dimension"}
|
---|
144 | .Concat(iter.Current != null ? iter.Current.FeatureNames : new [] { "(null)" })));
|
---|
145 | do {
|
---|
146 | PrintInstanceLine(iter.Current);
|
---|
147 | } while (iter.MoveNext());
|
---|
148 | }
|
---|
149 | }
|
---|
150 |
|
---|
151 | private static void PrintInstanceLine(InstanceDescriptor instance) {
|
---|
152 | Console.WriteLine(string.Join(";",
|
---|
153 | new[] {instance.Name, instance.Cls, instance.Dimension.ToString(CultureInfo.CurrentCulture)}
|
---|
154 | .Concat(instance.FeatureValues.Select(x => x.ToString(CultureInfo.CurrentCulture)))));
|
---|
155 | }
|
---|
156 |
|
---|
157 | private static void ExploreMatching(List<QuadraticAssignmentProblem> instances, InstanceExplorer[] trainingExplorers, InstanceExplorer[] testExporers, bool parallel = false) {
|
---|
158 | var sync = new object();
|
---|
159 | var rand = new Random();
|
---|
160 | var first = rand.Next();
|
---|
161 | var second = rand.Next();
|
---|
162 | while (first == second) second = rand.Next();
|
---|
163 |
|
---|
164 | var knowledgeBase = new Dictionary<InstanceExplorer, Tuple<InstancesStandardizer, List<InstanceDescriptor>>>();
|
---|
165 | Action<InstanceExplorer> trainingBody = (kbExplorer) => {
|
---|
166 | var trainingData = GenerateData(instances, kbExplorer, parallel);
|
---|
167 | var standardizer = InstancesStandardizer.Create(trainingData);
|
---|
168 | standardizer.Apply(trainingData);
|
---|
169 | lock (sync) {
|
---|
170 | knowledgeBase.Add(kbExplorer, Tuple.Create(standardizer, trainingData));
|
---|
171 | }
|
---|
172 | };
|
---|
173 | if (parallel) {
|
---|
174 | Parallel.ForEach(trainingExplorers, trainingBody);
|
---|
175 | } else {
|
---|
176 | foreach (var kbExplorer in trainingExplorers) trainingBody(kbExplorer);
|
---|
177 | }
|
---|
178 |
|
---|
179 | var experimentBase = new Dictionary<InstanceExplorer, List<InstanceDescriptor>>();
|
---|
180 | Action<InstanceExplorer> testBody = (expExplorer) => {
|
---|
181 | var testData = GenerateData(instances, expExplorer, parallel);
|
---|
182 | lock (sync) {
|
---|
183 | experimentBase.Add(expExplorer, testData);
|
---|
184 | }
|
---|
185 | };
|
---|
186 | if (parallel) {
|
---|
187 | Parallel.ForEach(testExporers, testBody);
|
---|
188 | } else {
|
---|
189 | foreach (var expExplorer in testExporers) testBody(expExplorer);
|
---|
190 | }
|
---|
191 |
|
---|
192 | var data = from kb in knowledgeBase
|
---|
193 | from exp in experimentBase
|
---|
194 | select new { Training = kb, Test = exp };
|
---|
195 |
|
---|
196 | if (parallel) {
|
---|
197 | Parallel.ForEach(data, (point) => {
|
---|
198 | var normalizedTest = point.Test.Value.Select(x => new InstanceDescriptor(x)).ToList();
|
---|
199 | point.Training.Value.Item1.Apply(normalizedTest);
|
---|
200 | var result = Compare(point.Training.Value.Item2, normalizedTest);
|
---|
201 | lock (sync) {
|
---|
202 | Console.WriteLine("{0}\t{1}\t{2}\t{3:F2}\t{4}\t{5:F2}\t{6}",
|
---|
203 | point.Training.Key.Effort, point.Test.Key.Effort, result.ExactCount,
|
---|
204 | result.ExactAverageRank, result.ClsCount, result.ClsAverageRank, result.TotalCount);
|
---|
205 | }
|
---|
206 | });
|
---|
207 | } else {
|
---|
208 | foreach (var point in data) {
|
---|
209 | var normalizedTest = point.Test.Value.Select(x => new InstanceDescriptor(x)).ToList();
|
---|
210 | point.Training.Value.Item1.Apply(normalizedTest);
|
---|
211 | var result = Compare(point.Training.Value.Item2, normalizedTest);
|
---|
212 | Console.WriteLine("{0}\t{1}\t{2}\t{3:F2}\t{4}\t{5:F2}\t{6}",
|
---|
213 | point.Training.Key.Effort, point.Test.Key.Effort, result.ExactCount,
|
---|
214 | result.ExactAverageRank, result.ClsCount, result.ClsAverageRank, result.TotalCount);
|
---|
215 | }
|
---|
216 | }
|
---|
217 | }
|
---|
218 |
|
---|
219 | private class MatchResult {
|
---|
220 | public int ExactCount { get; set; }
|
---|
221 | public int ClsCount { get; set; }
|
---|
222 | public int TotalCount { get; set; }
|
---|
223 | public double ExactAverageRank { get; set; }
|
---|
224 | public double ClsAverageRank { get; set; }
|
---|
225 | }
|
---|
226 | }
|
---|
227 | }
|
---|