Free cookie consent management tool by TermsFeed Policy Generator

source: branches/PerformanceComparison/HeuristicLab.OptimizationExpertSystem.Common/3.3/Recommenders/KNearestNeighborModel.cs @ 13797

Last change on this file since 13797 was 13794, checked in by abeham, 9 years ago

#2457: worked on recommendation algorithms (x-validation)

File size: 3.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using HeuristicLab.Collections;
23using HeuristicLab.Optimization;
24using System.Collections.Generic;
25using System.Linq;
26
27namespace HeuristicLab.OptimizationExpertSystem.Common {
28  public class KNearestNeighborModel : IRecommendationModel {
29    private readonly int K;
30    private readonly string[] characteristics;
31    private readonly Dictionary<IRun, Dictionary<IAlgorithm, double>> performance;
32    private readonly BidirectionalDictionary<int, IRun> problemInstanceMap;
33    private readonly double[] medianValues;
34
35    public KNearestNeighborModel(int k, Dictionary<IRun, Dictionary<IAlgorithm, double>> perfData, string[] characteristics) {
36      this.K = k;
37      this.performance = perfData;
38      this.characteristics = characteristics;
39      problemInstanceMap = new BidirectionalDictionary<int, IRun>();
40      var i = 0;
41      foreach (var pi in perfData.Keys) {
42        problemInstanceMap.Add(i++, pi);
43      }
44      this.medianValues = KnowledgeCenter.GetMedianValues(perfData.Keys.OrderBy(problemInstanceMap.GetBySecond).ToArray(), characteristics);
45    }
46
47    public IEnumerable<KeyValuePair<IAlgorithm, double>> GetRanking(IRun problemInstance) {
48      var features = KnowledgeCenter.GetFeatures(performance.Keys.OrderBy(problemInstanceMap.GetBySecond).ToArray(), characteristics, medianValues);
49      var feature = KnowledgeCenter.GetFeatures(new [] { problemInstance }, characteristics, medianValues)[0];
50      var nearestK = features.Select((f, i) => new { ProblemInstanceIndex = i, Feature = f })
51                             .OrderBy(x => x.Feature.Select((f, i) => (f - feature[i]) * (f - feature[i])).Sum())
52                             .Take(K);
53     
54      var performances = new Dictionary<IAlgorithm, List<double>>();
55      foreach (var next in nearestK) {
56        var perfs = performance[problemInstanceMap.GetByFirst(next.ProblemInstanceIndex)];
57        if (perfs.Count == 0) continue;
58       
59        foreach (var p in perfs) {
60          var ert = p.Value;
61          if (double.IsNaN(ert)) ert = int.MaxValue;
62          List<double> erts;
63          if (!performances.TryGetValue(p.Key, out erts)) {
64            performances[p.Key] = new List<double>() { ert }; ;
65          } else erts.Add(ert);
66        }
67      }
68
69      return performances.Select(x => new { Alg = x.Key, Perf = x.Value.Average() })
70                         .OrderBy(x => x.Perf)
71                         .Select(x => new KeyValuePair<IAlgorithm, double>(x.Alg, x.Perf));
72    }
73  }
74}
Note: See TracBrowser for help on using the repository browser.