[13774] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HeuristicLab.Analysis;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Optimization;
|
---|
| 27 | using HeuristicLab.Parameters;
|
---|
| 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 29 | using System;
|
---|
| 30 | using System.Collections.Generic;
|
---|
| 31 | using System.Linq;
|
---|
| 32 |
|
---|
| 33 | namespace HeuristicLab.OptimizationExpertSystem.Common {
|
---|
| 34 | [Item("Distance Weighted Recommender", "")]
|
---|
| 35 | [StorableClass]
|
---|
| 36 | public class DistanceWeightedRecommender : ParameterizedNamedItem, IAlgorithmInstanceRecommender {
|
---|
| 37 |
|
---|
| 38 | private IFixedValueParameter<DoubleValue> NeighborhoodFactorParameter {
|
---|
| 39 | get { return (IFixedValueParameter<DoubleValue>)Parameters["NeighborhoodFactor"]; }
|
---|
| 40 | }
|
---|
| 41 |
|
---|
| 42 | public double NeighborhoodFactor {
|
---|
| 43 | get { return NeighborhoodFactorParameter.Value.Value; }
|
---|
| 44 | set { NeighborhoodFactorParameter.Value.Value = value; }
|
---|
| 45 | }
|
---|
| 46 |
|
---|
| 47 | [StorableConstructor]
|
---|
| 48 | private DistanceWeightedRecommender(bool deserializing) : base(deserializing) { }
|
---|
| 49 | private DistanceWeightedRecommender(DistanceWeightedRecommender original, Cloner cloner)
|
---|
| 50 | : base(original, cloner) { }
|
---|
[13787] | 51 | public DistanceWeightedRecommender() {
|
---|
[13774] | 52 | Parameters.Add(new FixedValueParameter<DoubleValue>("NeighborhoodFactor", "Penalize neighbors that are far away.", new DoubleValue(5)));
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 56 | return new DistanceWeightedRecommender(this, cloner);
|
---|
| 57 | }
|
---|
| 58 |
|
---|
[13787] | 59 | public IRecommendationModel TrainModel(KnowledgeCenter okc, string[] characteristics) {
|
---|
| 60 | var piDistances = okc.GetProblemDistances(characteristics);
|
---|
[13774] | 61 | var maxDist = piDistances.Max(x => x.Value);
|
---|
| 62 | var instances = new SortedList<double, IAlgorithm>();
|
---|
| 63 | foreach (var relevantRuns in okc.GetKnowledgeBaseByAlgorithm()) {
|
---|
| 64 | var algorithm = relevantRuns.Key;
|
---|
| 65 | Func<double, double> distFunc = (d) => Math.Exp(NeighborhoodFactor * (-d / maxDist));
|
---|
| 66 | var pis = relevantRuns.Value.Select(x => ((StringValue)x.Parameters["Problem Name"]).Value).Distinct()
|
---|
| 67 | .Select(x => Tuple.Create(x, okc.ProblemInstances.SingleOrDefault(y => ((StringValue)y.Parameters["Problem Name"]).Value == x)))
|
---|
| 68 | .Where(x => x.Item2 != null && x.Item2.Parameters.ContainsKey("BestKnownQuality") && piDistances.ContainsKey(x.Item2))
|
---|
| 69 | .Select(x => Tuple.Create(x.Item1, distFunc(piDistances[x.Item2]), ((DoubleValue)x.Item2.Parameters["BestKnownQuality"]).Value))
|
---|
| 70 | .ToDictionary(x => x.Item1, x => Tuple.Create(x.Item2, x.Item3));
|
---|
| 71 | var sumPis = pis.Sum(x => x.Value.Item1);
|
---|
| 72 | var avgERT = 0.0;
|
---|
| 73 | foreach (var problemRuns in relevantRuns.Value.GroupBy(x => ((StringValue)x.Parameters["Problem Name"]).Value)) {
|
---|
| 74 | Tuple<double, double> info;
|
---|
| 75 | if (!pis.TryGetValue(problemRuns.Key, out info)) continue;
|
---|
| 76 | var convGraph = new List<List<Tuple<double, double>>>();
|
---|
| 77 | foreach (var run in problemRuns) {
|
---|
| 78 | var current = new List<Tuple<double, double>>();
|
---|
| 79 | var performanceGraph = ((IndexedDataTable<double>)run.Results["QualityPerEvaluations"]);
|
---|
| 80 | current.AddRange(performanceGraph.Rows.First().Values.TakeWhile(v => v.Item1 < okc.MaximumEvaluations.Value));
|
---|
| 81 | if (current.Count > 0) {
|
---|
| 82 | current.Add(Tuple.Create((double)okc.MaximumEvaluations.Value, current.Last().Item2));
|
---|
| 83 | convGraph.Add(current);
|
---|
| 84 | }
|
---|
| 85 | }
|
---|
| 86 | var ert = ExpectedRuntimeHelper.CalculateErt(convGraph, (okc.Maximization ? (1 - okc.MinimumTarget.Value) : (1 + okc.MinimumTarget.Value)) * info.Item2, okc.Maximization).ExpectedRuntime;
|
---|
| 87 | if (double.IsNaN(ert)) {
|
---|
| 88 | ert = ExpectedRuntimeHelper.CalculateErt(problemRuns.ToList(), "QualityPerEvaluations", (okc.Maximization ? (1 - okc.MinimumTarget.Value) : (1 + okc.MinimumTarget.Value)) * info.Item2, okc.Maximization).ExpectedRuntime;
|
---|
| 89 | if (double.IsNaN(ert)) ert = int.MaxValue;
|
---|
| 90 | }
|
---|
| 91 | avgERT += info.Item1 * ert;
|
---|
| 92 | }
|
---|
| 93 | avgERT /= sumPis;
|
---|
| 94 | if (instances.ContainsKey(avgERT)) {
|
---|
| 95 | avgERT += new System.Random().NextDouble();
|
---|
| 96 | }
|
---|
[13787] | 97 | instances.Add(avgERT, (IAlgorithm)algorithm.Clone());
|
---|
[13774] | 98 | }
|
---|
| 99 |
|
---|
[13787] | 100 | return new FixedRankModel(instances.Select(x => Tuple.Create(x.Value, x.Key)));
|
---|
[13774] | 101 | }
|
---|
| 102 | }
|
---|
| 103 | }
|
---|