[14678] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Globalization;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 |
|
---|
| 33 | namespace HeuristicLab.Analysis.FitnessLandscape {
|
---|
| 34 | [Item("Problem Instance Similarity Analyzer", "Base class for analyzing whether certain obtained characteristics match the characteristics of already known problem instances.")]
|
---|
| 35 | [StorableClass]
|
---|
| 36 | public abstract class ProblemInstanceAnalyzer : SingleSuccessorOperator, IAnalyzer {
|
---|
| 37 |
|
---|
| 38 | public bool EnabledByDefault {
|
---|
| 39 | get { return false; }
|
---|
| 40 | }
|
---|
| 41 |
|
---|
| 42 | [Storable]
|
---|
| 43 | private IResultParameter<StringMatrix> similarInstParam;
|
---|
| 44 | public IResultParameter<StringMatrix> SimilarInstancesParameter {
|
---|
| 45 | get { return similarInstParam; }
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | [Storable]
|
---|
| 49 | private IValueParameter<DoubleMatrix> characteristicsParam;
|
---|
| 50 | public IValueParameter<DoubleMatrix> CharacteristicsParameter {
|
---|
| 51 | get { return characteristicsParam; }
|
---|
| 52 | }
|
---|
| 53 |
|
---|
| 54 | public DoubleMatrix Characteristics {
|
---|
| 55 | get { return CharacteristicsParameter.Value; }
|
---|
| 56 | set { CharacteristicsParameter.Value = value; }
|
---|
| 57 | }
|
---|
| 58 |
|
---|
| 59 | [StorableConstructor]
|
---|
| 60 | protected ProblemInstanceAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
| 61 |
|
---|
| 62 | protected ProblemInstanceAnalyzer(ProblemInstanceAnalyzer original, Cloner cloner)
|
---|
| 63 | : base(original, cloner) {
|
---|
| 64 | similarInstParam = cloner.Clone(original.similarInstParam);
|
---|
| 65 | characteristicsParam = cloner.Clone(original.characteristicsParam);
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | public ProblemInstanceAnalyzer() {
|
---|
| 69 | Parameters.Add(similarInstParam = new ResultParameter<StringMatrix>("Similar Instances", "Ordered enumeration of similar problem instances to the one currently observed.", "Results", new StringMatrix(new [,] { { "undefined", double.NaN.ToString(CultureInfo.CurrentCulture.NumberFormat) } })));
|
---|
| 70 | Parameters.Add(characteristicsParam = new ValueParameter<DoubleMatrix>("Characteristics", "The matrix that contains the characteristics data and corresponding problem instance as row name."));
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | public override IOperation Apply() {
|
---|
| 74 | var kbCharacteristics = Characteristics;
|
---|
| 75 | if (kbCharacteristics == null) throw new InvalidOperationException("No characteristics are given.");
|
---|
| 76 |
|
---|
| 77 | var currentCharacteristics = GetCharacteristics();
|
---|
| 78 | if (currentCharacteristics == null) return base.Apply();
|
---|
| 79 |
|
---|
[14691] | 80 | var means = kbCharacteristics.GetRow(kbCharacteristics.Rows - 2).ToArray();
|
---|
| 81 | var stdevs = kbCharacteristics.GetRow(kbCharacteristics.Rows - 1).ToArray();
|
---|
| 82 |
|
---|
| 83 | for (var i = 0; i < means.Length; i++) {
|
---|
| 84 | currentCharacteristics[i] = (currentCharacteristics[i] - means[i]) / stdevs[i];
|
---|
| 85 | }
|
---|
| 86 |
|
---|
| 87 | var order = Enumerable.Range(0, kbCharacteristics.Rows - 2)
|
---|
[14678] | 88 | .Select(row => new { Row = row, MSE = kbCharacteristics.GetRow(row).Zip(currentCharacteristics, (a, b) => (a - b) * (a - b)).Average() })
|
---|
| 89 | .OrderBy(x => x.MSE);
|
---|
| 90 |
|
---|
| 91 | var instances = kbCharacteristics.RowNames.ToList();
|
---|
[14691] | 92 | while (instances.Count < kbCharacteristics.Rows - 2)
|
---|
[14678] | 93 | instances.Add(instances.Count.ToString(CultureInfo.CurrentCulture.NumberFormat));
|
---|
| 94 |
|
---|
| 95 | var result = new StringMatrix(instances.Count, 2);
|
---|
| 96 | var idx = 0;
|
---|
| 97 | foreach (var o in order) {
|
---|
| 98 | result[idx, 0] = instances[o.Row];
|
---|
| 99 | result[idx, 1] = o.MSE.ToString(CultureInfo.CurrentCulture.NumberFormat);
|
---|
| 100 | idx++;
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | similarInstParam.ActualValue = result;
|
---|
| 104 |
|
---|
| 105 | return base.Apply();
|
---|
| 106 | }
|
---|
| 107 |
|
---|
| 108 | protected abstract DoubleArray GetCharacteristics();
|
---|
| 109 | }
|
---|
| 110 | }
|
---|