1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Common;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.Operators;
|
---|
26 | using HeuristicLab.Parameters;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using System;
|
---|
29 | using System.Collections.Generic;
|
---|
30 | using System.Linq;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Analysis.FitnessLandscape {
|
---|
33 | [Item("Ruggedness Calculator", "Calculates ruggedness descriptors froma given quality trail.")]
|
---|
34 | [StorableClass]
|
---|
35 | public class RuggednessCalculator : SingleSuccessorOperator {
|
---|
36 |
|
---|
37 | #region Parameters
|
---|
38 | public LookupParameter<DataTable> QualityTrailParameter {
|
---|
39 | get { return (LookupParameter<DataTable>)Parameters["QualityTrail"]; }
|
---|
40 | }
|
---|
41 | public LookupParameter<IntValue> CorrelationLengthParameter {
|
---|
42 | get { return (LookupParameter<IntValue>)Parameters["CorrelationLength"]; }
|
---|
43 | }
|
---|
44 | public LookupParameter<DoubleArray> AutoCorrelationParameter {
|
---|
45 | get { return (LookupParameter<DoubleArray>)Parameters["AutoCorrelation"]; }
|
---|
46 | }
|
---|
47 | #endregion
|
---|
48 |
|
---|
49 | #region Constructors & Cloning
|
---|
50 | [StorableConstructor]
|
---|
51 | protected RuggednessCalculator(bool deserializing) : base(deserializing) { }
|
---|
52 | protected RuggednessCalculator(RuggednessCalculator original, Cloner cloner) : base(original, cloner) { }
|
---|
53 | public RuggednessCalculator() {
|
---|
54 | Parameters.Add(new LookupParameter<DataTable>("QualityTrail", "Historical values of walk qualities"));
|
---|
55 | Parameters.Add(new LookupParameter<IntValue>("CorrelationLength", "Average maximum distances between correlated quality values."));
|
---|
56 | Parameters.Add(new LookupParameter<DoubleArray>("AutoCorrelation", "AutoCorrelation"));
|
---|
57 | }
|
---|
58 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
59 | return new RuggednessCalculator(this, cloner);
|
---|
60 | }
|
---|
61 | #endregion
|
---|
62 |
|
---|
63 | public override IOperation Apply() {
|
---|
64 | double[] qualities = QualityTrailParameter.ActualValue.Rows.First().Values.ToArray();
|
---|
65 | double[] autocorrelation;
|
---|
66 | CorrelationLengthParameter.ActualValue = new IntValue(CalculateCorrelationLength(qualities, out autocorrelation));
|
---|
67 | AutoCorrelationParameter.ActualValue = new DoubleArray(autocorrelation);
|
---|
68 | return base.Apply();
|
---|
69 | }
|
---|
70 |
|
---|
71 | public static int CalculateCorrelationLength(double[] qualities, out double[] acf) {
|
---|
72 | double[] correlations = new double[qualities.Length];
|
---|
73 | alglib.corr.corrr1dcircular(qualities, qualities.Length, qualities, qualities.Length, ref correlations);
|
---|
74 | double mean = 0;
|
---|
75 | double variance = 0;
|
---|
76 | double skewness = 0;
|
---|
77 | double kurtosis = 0;
|
---|
78 | alglib.basestat.samplemoments(qualities, qualities.Length, ref mean, ref variance, ref skewness, ref kurtosis);
|
---|
79 | List<double> autocorrelation = new List<double>() { 1.0 };
|
---|
80 | int correlationLength = -1, counter = 1;
|
---|
81 | for (; counter < qualities.Length / 2; counter++) {
|
---|
82 | double value = correlations[counter] / qualities.Length - mean * mean;
|
---|
83 | if (variance > 0)
|
---|
84 | value = Math.Max(Math.Min(value / variance, 1.0), -1.0);
|
---|
85 | else
|
---|
86 | value = 1;
|
---|
87 | autocorrelation.Add(value);
|
---|
88 | if (value < 0 && correlationLength < 0) correlationLength = counter;
|
---|
89 | }
|
---|
90 | acf = autocorrelation.ToArray();
|
---|
91 | return correlationLength - 1;
|
---|
92 | }
|
---|
93 |
|
---|
94 | public static bool AnyGreaterOne(double[] values) {
|
---|
95 | return values.Any(d => d > 1);
|
---|
96 | }
|
---|
97 | }
|
---|
98 | }
|
---|