1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 | using HeuristicLab.Random;
|
---|
31 | using HeuristicLab.Optimization;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Algorithms.MemPR.Permutation.SolutionModel.Univariate {
|
---|
34 | [Item("Univariate solution model (Permutation.Absolute)", "")]
|
---|
35 | [StorableClass]
|
---|
36 | public sealed class UnivariateAbsoluteModel : Item, ISolutionModel<Encodings.PermutationEncoding.Permutation> {
|
---|
37 | [Storable]
|
---|
38 | public DoubleMatrix Probabilities { get; set; }
|
---|
39 | [Storable]
|
---|
40 | public IRandom Random { get; set; }
|
---|
41 |
|
---|
42 | [StorableConstructor]
|
---|
43 | private UnivariateAbsoluteModel(bool deserializing) : base(deserializing) { }
|
---|
44 | private UnivariateAbsoluteModel(UnivariateAbsoluteModel original, Cloner cloner)
|
---|
45 | : base(original, cloner) {
|
---|
46 | Probabilities = cloner.Clone(original.Probabilities);
|
---|
47 | Random = cloner.Clone(original.Random);
|
---|
48 | }
|
---|
49 | public UnivariateAbsoluteModel(IRandom random, double[,] probabilities) {
|
---|
50 | Probabilities = new DoubleMatrix(probabilities);
|
---|
51 | Random = random;
|
---|
52 | }
|
---|
53 | public UnivariateAbsoluteModel(IRandom random, DoubleMatrix probabilties) {
|
---|
54 | Probabilities = probabilties;
|
---|
55 | Random = random;
|
---|
56 | }
|
---|
57 |
|
---|
58 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
59 | return new UnivariateAbsoluteModel(this, cloner);
|
---|
60 | }
|
---|
61 |
|
---|
62 | public Encodings.PermutationEncoding.Permutation Sample() {
|
---|
63 | var N = Probabilities.Rows;
|
---|
64 | var child = new Encodings.PermutationEncoding.Permutation(PermutationTypes.Absolute, N);
|
---|
65 | var indices = Enumerable.Range(0, N).Shuffle(Random).ToList();
|
---|
66 | var values = Enumerable.Range(0, N).Shuffle(Random).ToList();
|
---|
67 | for (var i = N - 1; i > 0; i--) {
|
---|
68 | var nextIndex = indices[i];
|
---|
69 | var ball = Random.NextDouble();
|
---|
70 | for (var v = 0; v < values.Count; v++) {
|
---|
71 | ball -= Probabilities[nextIndex, values[v]] + 1.0 / N;
|
---|
72 | if (ball > 0.0) continue;
|
---|
73 | child[nextIndex] = values[v];
|
---|
74 | values.RemoveAt(v);
|
---|
75 | indices.RemoveAt(i);
|
---|
76 | break;
|
---|
77 | }
|
---|
78 | if (ball > 0) {
|
---|
79 | var v = values.Count - 1;
|
---|
80 | child[nextIndex] = values[v];
|
---|
81 | values.RemoveAt(v);
|
---|
82 | indices.RemoveAt(i);
|
---|
83 | }
|
---|
84 | }
|
---|
85 | child[indices[0]] = values[0];
|
---|
86 | return child;
|
---|
87 | }
|
---|
88 |
|
---|
89 | public static UnivariateAbsoluteModel CreateUnbiased(IRandom random, IList<Encodings.PermutationEncoding.Permutation> pop, int N) {
|
---|
90 | var model = new double[N, N];
|
---|
91 | var factor = 1.0 / pop.Count;
|
---|
92 | for (var i = 0; i < pop.Count; i++) {
|
---|
93 | for (var j = 0; j < N; j++) {
|
---|
94 | model[j, pop[i][j]] += factor;
|
---|
95 | }
|
---|
96 | }
|
---|
97 | return new UnivariateAbsoluteModel(random, model);
|
---|
98 | }
|
---|
99 |
|
---|
100 | public static UnivariateAbsoluteModel CreateWithRankBias(IRandom random, bool maximization, IList<Encodings.PermutationEncoding.Permutation> population, IEnumerable<double> qualities, int N) {
|
---|
101 | var popSize = 0;
|
---|
102 | var model = new double[N, N];
|
---|
103 |
|
---|
104 | var pop = population.Zip(qualities, (b, q) => new { Solution = b, Fitness = q });
|
---|
105 | foreach (var ind in maximization ? pop.OrderBy(x => x.Fitness) : pop.OrderByDescending(x => x.Fitness)) {
|
---|
106 | // from worst to best, worst solution has 1 vote, best solution N votes
|
---|
107 | popSize++;
|
---|
108 | for (var j = 0; j < N; j++) {
|
---|
109 | model[j, ind.Solution[j]] += popSize;
|
---|
110 | }
|
---|
111 | }
|
---|
112 | // normalize to [0;1]
|
---|
113 | var factor = 2.0 / (popSize + 1);
|
---|
114 | for (var i = 0; i < N; i++) {
|
---|
115 | for (var j = 0; j < N; j++)
|
---|
116 | model[i, j] *= factor / popSize;
|
---|
117 | }
|
---|
118 | if (popSize == 0) throw new ArgumentException("Cannot train model from empty population.");
|
---|
119 | return new UnivariateAbsoluteModel(random, model);
|
---|
120 | }
|
---|
121 |
|
---|
122 | public static UnivariateAbsoluteModel CreateWithFitnessBias(IRandom random, bool maximization, IList<Encodings.PermutationEncoding.Permutation> population, IEnumerable<double> qualities, int N) {
|
---|
123 | var proportions = Util.Auxiliary.PrepareProportional(qualities, true, !maximization);
|
---|
124 | var factor = 1.0 / proportions.Sum();
|
---|
125 | var model = new double[N, N];
|
---|
126 |
|
---|
127 | foreach (var ind in population.Zip(proportions, (p, q) => new { Solution = p, Proportion = q })) {
|
---|
128 | for (var x = 0; x < model.Length; x++) {
|
---|
129 | for (var j = 0; j < N; j++) {
|
---|
130 | model[j, ind.Solution[j]] += ind.Proportion * factor;
|
---|
131 | }
|
---|
132 | }
|
---|
133 | }
|
---|
134 | return new UnivariateAbsoluteModel(random, model);
|
---|
135 | }
|
---|
136 | }
|
---|
137 | }
|
---|