Free cookie consent management tool by TermsFeed Policy Generator

source: branches/PerformanceComparison/HeuristicLab.Algorithms.MemPR/3.3/LinearLinkage/LinearLinkageMemPR.cs @ 14871

Last change on this file since 14871 was 14695, checked in by abeham, 8 years ago

#2457: small changes to MemPR

File size: 13.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Threading;
26using HeuristicLab.Algorithms.MemPR.Interfaces;
27using HeuristicLab.Algorithms.MemPR.Util;
28using HeuristicLab.Common;
29using HeuristicLab.Core;
30using HeuristicLab.Encodings.LinearLinkageEncoding;
31using HeuristicLab.Optimization;
32using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
33using HeuristicLab.PluginInfrastructure;
34using HeuristicLab.Random;
35
36namespace HeuristicLab.Algorithms.MemPR.Grouping {
37  [Item("MemPR (linear linkage)", "MemPR implementation for linear linkage vectors.")]
38  [StorableClass]
39  [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 999)]
40  public class LinearLinkageMemPR : MemPRAlgorithm<ISingleObjectiveHeuristicOptimizationProblem, LinearLinkage, LinearLinkageMemPRPopulationContext, LinearLinkageMemPRSolutionContext> {
41    [StorableConstructor]
42    protected LinearLinkageMemPR(bool deserializing) : base(deserializing) { }
43    protected LinearLinkageMemPR(LinearLinkageMemPR original, Cloner cloner) : base(original, cloner) { }
44    public LinearLinkageMemPR() {
45      foreach (var trainer in ApplicationManager.Manager.GetInstances<ISolutionModelTrainer<LinearLinkageMemPRPopulationContext>>())
46        SolutionModelTrainerParameter.ValidValues.Add(trainer);
47
48      if (SolutionModelTrainerParameter.ValidValues.Count > 0) {
49        var unbiased = SolutionModelTrainerParameter.ValidValues.FirstOrDefault(x => !x.Bias);
50        if (unbiased != null) SolutionModelTrainerParameter.Value = unbiased;
51      }
52
53      foreach (var localSearch in ApplicationManager.Manager.GetInstances<ILocalSearch<LinearLinkageMemPRSolutionContext>>()) {
54        LocalSearchParameter.ValidValues.Add(localSearch);
55      }
56    }
57
58    public override IDeepCloneable Clone(Cloner cloner) {
59      return new LinearLinkageMemPR(this, cloner);
60    }
61
62    protected override bool Eq(LinearLinkage a, LinearLinkage b) {
63      if (a.Length != b.Length) return false;
64      for (var i = 0; i < a.Length; i++)
65        if (a[i] != b[i]) return false;
66      return true;
67    }
68
69    protected override double Dist(ISingleObjectiveSolutionScope<LinearLinkage> a, ISingleObjectiveSolutionScope<LinearLinkage> b) {
70      return Dist(a.Solution, b.Solution);
71    }
72
73    private double Dist(LinearLinkage a, LinearLinkage b) {
74      return 1.0 - HammingSimilarityCalculator.CalculateSimilarity(a, b);
75    }
76
77    protected override ISolutionSubspace<LinearLinkage> CalculateSubspace(IEnumerable<LinearLinkage> solutions, bool inverse = false) {
78      var pop = solutions.ToList();
79      var N = pop[0].Length;
80      var subspace = new bool[N];
81      for (var i = 0; i < N; i++) {
82        var val = pop[0][i];
83        if (inverse) subspace[i] = true;
84        for (var p = 1; p < pop.Count; p++) {
85          if (pop[p][i] != val) subspace[i] = !inverse;
86        }
87      }
88      return new LinearLinkageSolutionSubspace(subspace);
89    }
90
91    protected override void AdaptiveWalk(
92        ISingleObjectiveSolutionScope<LinearLinkage> scope,
93        int maxEvals, CancellationToken token,
94        ISolutionSubspace<LinearLinkage> sub_space = null) {
95      var maximization = Context.Maximization;
96      var subspace = sub_space is LinearLinkageSolutionSubspace ? ((LinearLinkageSolutionSubspace)sub_space).Subspace : null;
97      var evaluations = 0;
98      var quality = scope.Fitness;
99      if (double.IsNaN(quality)) {
100        Context.Evaluate(scope, token);
101        quality = scope.Fitness;
102        evaluations++;
103        if (evaluations >= maxEvals) return;
104      }
105      var bestQuality = quality;
106      var currentScope = (ISingleObjectiveSolutionScope<LinearLinkage>)scope.Clone();
107      var current = currentScope.Solution;
108      LinearLinkage bestOfTheWalk = null;
109      var bestOfTheWalkF = double.NaN;
110
111      var tabu = new double[current.Length, current.Length];
112      for (var i = 0; i < current.Length; i++) {
113        for (var j = i; j < current.Length; j++) {
114          tabu[i, j] = tabu[j, i] = maximization ? double.MinValue : double.MaxValue;
115        }
116        tabu[i, current[i]] = quality;
117      }
118
119      // this dictionary holds the last relevant links
120      var groupItems = new List<int>();
121      var lleb = current.ToBackLinks();
122      Move bestOfTheRest = null;
123      var bestOfTheRestF = double.NaN;
124      var lastAppliedMove = -1;
125      for (var iter = 0; iter < int.MaxValue; iter++) {
126        // clear the dictionary before a new pass through the array is made
127        groupItems.Clear();
128        for (var i = 0; i < current.Length; i++) {
129          if (subspace != null && !subspace[i]) {
130            if (lleb[i] != i)
131              groupItems.Remove(lleb[i]);
132            groupItems.Add(i);
133            continue;
134          }
135
136          var next = current[i];
137
138          if (lastAppliedMove == i) {
139            if (bestOfTheRest != null) {
140              bestOfTheRest.Apply(current);
141              bestOfTheRest.ApplyToLLEb(lleb);
142              currentScope.Fitness = bestOfTheRestF;
143              quality = bestOfTheRestF;
144              if (maximization) {
145                tabu[i, next] = Math.Max(tabu[i, next], bestOfTheRestF);
146                tabu[i, current[i]] = Math.Max(tabu[i, current[i]], bestOfTheRestF);
147              } else {
148                tabu[i, next] = Math.Min(tabu[i, next], bestOfTheRestF);
149                tabu[i, current[i]] = Math.Min(tabu[i, current[i]], bestOfTheRestF);
150              }
151              if (FitnessComparer.IsBetter(maximization, bestOfTheRestF, bestOfTheWalkF)) {
152                bestOfTheWalk = (LinearLinkage)current.Clone();
153                bestOfTheWalkF = bestOfTheRestF;
154              }
155              bestOfTheRest = null;
156              bestOfTheRestF = double.NaN;
157              lastAppliedMove = i;
158            } else {
159              lastAppliedMove = -1;
160            }
161            break;
162          } else {
163            foreach (var move in MoveGenerator.GenerateForItem(i, groupItems, current, lleb)) {
164              // we intend to break link i -> next
165              var qualityToBreak = tabu[i, next];
166              move.Apply(current);
167              var qualityToRestore = tabu[i, current[i]]; // current[i] is new next
168              Context.Evaluate(currentScope, token);
169              evaluations++;
170              var moveF = currentScope.Fitness;
171              var isNotTabu = FitnessComparer.IsBetter(maximization, moveF, qualityToBreak)
172                              && FitnessComparer.IsBetter(maximization, moveF, qualityToRestore);
173              var isImprovement = FitnessComparer.IsBetter(maximization, moveF, quality);
174              var isAspired = FitnessComparer.IsBetter(maximization, moveF, bestQuality);
175              if ((isNotTabu && isImprovement) || isAspired) {
176                if (maximization) {
177                  tabu[i, next] = Math.Max(tabu[i, next], moveF);
178                  tabu[i, current[i]] = Math.Max(tabu[i, current[i]], moveF);
179                } else {
180                  tabu[i, next] = Math.Min(tabu[i, next], moveF);
181                  tabu[i, current[i]] = Math.Min(tabu[i, current[i]], moveF);
182                }
183                quality = moveF;
184                if (isAspired) bestQuality = quality;
185
186                move.ApplyToLLEb(lleb);
187
188                if (FitnessComparer.IsBetter(maximization, moveF, bestOfTheWalkF)) {
189                  bestOfTheWalk = (LinearLinkage)current.Clone();
190                  bestOfTheWalkF = moveF;
191                }
192
193                bestOfTheRest = null;
194                bestOfTheRestF = double.NaN;
195                lastAppliedMove = i;
196                break;
197              } else {
198                if (isNotTabu) {
199                  if (FitnessComparer.IsBetter(maximization, moveF, bestOfTheRestF)) {
200                    bestOfTheRest = move;
201                    bestOfTheRestF = moveF;
202                  }
203                }
204                move.Undo(current);
205                currentScope.Fitness = quality;
206              }
207              if (evaluations >= maxEvals) break;
208            }
209          }
210          if (lleb[i] != i)
211            groupItems.Remove(lleb[i]);
212          groupItems.Add(i);
213          if (evaluations >= maxEvals) break;
214          if (token.IsCancellationRequested) break;
215        }
216        if (lastAppliedMove == -1) { // no move has been applied
217          if (bestOfTheRest != null) {
218            var i = bestOfTheRest.Item;
219            var next = current[i];
220            bestOfTheRest.Apply(current);
221            currentScope.Fitness = bestOfTheRestF;
222            quality = bestOfTheRestF;
223            if (maximization) {
224              tabu[i, next] = Math.Max(tabu[i, next], bestOfTheRestF);
225              tabu[i, current[i]] = Math.Max(tabu[i, current[i]], bestOfTheRestF);
226            } else {
227              tabu[i, next] = Math.Min(tabu[i, next], bestOfTheRestF);
228              tabu[i, current[i]] = Math.Min(tabu[i, current[i]], bestOfTheRestF);
229            }
230            if (FitnessComparer.IsBetter(maximization, bestOfTheRestF, bestOfTheWalkF)) {
231              bestOfTheWalk = (LinearLinkage)current.Clone();
232              bestOfTheWalkF = bestOfTheRestF;
233            }
234
235            bestOfTheRest = null;
236            bestOfTheRestF = double.NaN;
237          } else break;
238        }
239        if (evaluations >= maxEvals) break;
240        if (token.IsCancellationRequested) break;
241      }
242      if (bestOfTheWalk != null) {
243        scope.Solution = bestOfTheWalk;
244        scope.Fitness = bestOfTheWalkF;
245      }
246    }
247
248    protected override ISingleObjectiveSolutionScope<LinearLinkage> Breed(ISingleObjectiveSolutionScope<LinearLinkage> p1, ISingleObjectiveSolutionScope<LinearLinkage> p2, CancellationToken token) {
249      var cache = new HashSet<LinearLinkage>(new LinearLinkageEqualityComparer());
250      cache.Add(p1.Solution);
251      cache.Add(p2.Solution);
252
253      var cacheHits = new Dictionary<int, int>() { { 0, 0 }, { 1, 0 } };
254      var evaluations = 0;
255      var probe = Context.ToScope(null);
256      ISingleObjectiveSolutionScope<LinearLinkage> offspring = null;
257      while (evaluations < p1.Solution.Length) {
258        LinearLinkage c = null;
259        var xochoice = cacheHits.SampleRandom(Context.Random).Key;
260        switch (xochoice) {
261          case 0: c = GroupCrossover.Apply(Context.Random, p1.Solution, p2.Solution); break;
262          case 1: c = SinglePointCrossover.Apply(Context.Random, p1.Solution, p2.Solution); break;
263        }
264        if (cache.Contains(c)) {
265          cacheHits[xochoice]++;
266          if (cacheHits[xochoice] > 10) {
267            cacheHits.Remove(xochoice);
268            if (cacheHits.Count == 0) break;
269          }
270          continue;
271        }
272        probe.Solution = c;
273        Context.Evaluate(probe, token);
274        evaluations++;
275        cache.Add(c);
276        if (offspring == null || Context.IsBetter(probe, offspring)) {
277          offspring = probe;
278          if (Context.IsBetter(offspring, p1) && Context.IsBetter(offspring, p2))
279            break;
280        }
281      }
282      Context.IncrementEvaluatedSolutions(evaluations);
283      return offspring ?? probe;
284    }
285
286    protected override ISingleObjectiveSolutionScope<LinearLinkage> Link(ISingleObjectiveSolutionScope<LinearLinkage> a, ISingleObjectiveSolutionScope<LinearLinkage> b, CancellationToken token, bool delink = false) {
287      var evaluations = 0;
288      var probe = (ISingleObjectiveSolutionScope<LinearLinkage>)a.Clone();
289      ISingleObjectiveSolutionScope<LinearLinkage> best = null;
290      while (true) {
291        Move bestMove = null;
292        var bestMoveQ = double.NaN;
293        // this approach may not fully relink the two solutions
294        foreach (var m in MoveGenerator.Generate(probe.Solution)) {
295          var distBefore = Dist(probe, b);
296          m.Apply(probe.Solution);
297          var distAfter = Dist(probe, b);
298          // consider all moves that would increase the distance between probe and b
299          // or decrease it depending on whether we do delinking or relinking
300          if (delink && distAfter > distBefore || !delink && distAfter < distBefore) {
301            var beforeQ = probe.Fitness;
302            Context.Evaluate(probe, token);
303            evaluations++;
304            var q = probe.Fitness;
305            m.Undo(probe.Solution);
306            probe.Fitness = beforeQ;
307
308            if (Context.IsBetter(q, bestMoveQ)) {
309              bestMove = m;
310              bestMoveQ = q;
311            }
312            if (Context.IsBetter(q, beforeQ)) break;
313          } else m.Undo(probe.Solution);
314        }
315        if (bestMove == null) break;
316        bestMove.Apply(probe.Solution);
317        probe.Fitness = bestMoveQ;
318        if (best == null || Context.IsBetter(probe, best))
319          best = (ISingleObjectiveSolutionScope<LinearLinkage>)probe.Clone();
320      }
321      Context.IncrementEvaluatedSolutions(evaluations);
322
323      return best ?? probe;
324    }
325  }
326}
Note: See TracBrowser for help on using the repository browser.