1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Threading;
|
---|
26 | using HeuristicLab.Algorithms.MemPR.Interfaces;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Core;
|
---|
29 | using HeuristicLab.Data;
|
---|
30 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
31 | using HeuristicLab.Optimization;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 | using HeuristicLab.PluginInfrastructure;
|
---|
34 | using HeuristicLab.Random;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.Algorithms.MemPR.Binary {
|
---|
37 | [Item("MemPR (binary)", "MemPR implementation for binary vectors.")]
|
---|
38 | [StorableClass]
|
---|
39 | [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 999)]
|
---|
40 | public class BinaryMemPR : MemPRAlgorithm<ISingleObjectiveHeuristicOptimizationProblem, BinaryVector, BinaryMemPRPopulationContext, BinaryMemPRSolutionContext> {
|
---|
41 | [StorableConstructor]
|
---|
42 | protected BinaryMemPR(bool deserializing) : base(deserializing) { }
|
---|
43 | protected BinaryMemPR(BinaryMemPR original, Cloner cloner) : base(original, cloner) { }
|
---|
44 | public BinaryMemPR() {
|
---|
45 | foreach (var trainer in ApplicationManager.Manager.GetInstances<ISolutionModelTrainer<BinaryMemPRPopulationContext>>())
|
---|
46 | SolutionModelTrainerParameter.ValidValues.Add(trainer);
|
---|
47 |
|
---|
48 | if (SolutionModelTrainerParameter.ValidValues.Count > 0) {
|
---|
49 | var unbiased = SolutionModelTrainerParameter.ValidValues.FirstOrDefault(x => !x.Bias);
|
---|
50 | if (unbiased != null) SolutionModelTrainerParameter.Value = unbiased;
|
---|
51 | }
|
---|
52 |
|
---|
53 | foreach (var localSearch in ApplicationManager.Manager.GetInstances<ILocalSearch<BinaryMemPRSolutionContext>>()) {
|
---|
54 | LocalSearchParameter.ValidValues.Add(localSearch);
|
---|
55 | }
|
---|
56 | }
|
---|
57 |
|
---|
58 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
59 | return new BinaryMemPR(this, cloner);
|
---|
60 | }
|
---|
61 |
|
---|
62 | protected override bool Eq(BinaryVector a, BinaryVector b) {
|
---|
63 | var len = a.Length;
|
---|
64 | for (var i = 0; i < len; i++)
|
---|
65 | if (a[i] != b[i]) return false;
|
---|
66 | return true;
|
---|
67 | }
|
---|
68 |
|
---|
69 | protected override double Dist(ISingleObjectiveSolutionScope<BinaryVector> a, ISingleObjectiveSolutionScope<BinaryVector> b) {
|
---|
70 | return 1.0 - HammingSimilarityCalculator.CalculateSimilarity(a.Solution, b.Solution);
|
---|
71 | }
|
---|
72 |
|
---|
73 | protected override ISolutionSubspace<BinaryVector> CalculateSubspace(IEnumerable<BinaryVector> solutions, bool inverse = false) {
|
---|
74 | var pop = solutions.ToList();
|
---|
75 | var N = pop[0].Length;
|
---|
76 | var subspace = new bool[N];
|
---|
77 | for (var i = 0; i < N; i++) {
|
---|
78 | var val = pop[0][i];
|
---|
79 | if (inverse) subspace[i] = true;
|
---|
80 | for (var p = 1; p < pop.Count; p++) {
|
---|
81 | if (pop[p][i] != val) subspace[i] = !inverse;
|
---|
82 | }
|
---|
83 | }
|
---|
84 | return new BinarySolutionSubspace(subspace);
|
---|
85 | }
|
---|
86 |
|
---|
87 | protected override void AdaptiveWalk(ISingleObjectiveSolutionScope<BinaryVector> scope, int maxEvals, CancellationToken token, ISolutionSubspace<BinaryVector> subspace = null) {
|
---|
88 | var evaluations = 0;
|
---|
89 | var subset = subspace != null ? ((BinarySolutionSubspace)subspace).Subspace : null;
|
---|
90 | if (double.IsNaN(scope.Fitness)) {
|
---|
91 | Context.Evaluate(scope, token);
|
---|
92 | evaluations++;
|
---|
93 | }
|
---|
94 | SingleObjectiveSolutionScope<BinaryVector> bestOfTheWalk = null;
|
---|
95 | var currentScope = (SingleObjectiveSolutionScope<BinaryVector>)scope.Clone();
|
---|
96 | var current = currentScope.Solution;
|
---|
97 | var N = current.Length;
|
---|
98 |
|
---|
99 | var subN = subset != null ? subset.Count(x => x) : N;
|
---|
100 | if (subN == 0) return;
|
---|
101 | var order = Enumerable.Range(0, N).Where(x => subset == null || subset[x]).Shuffle(Context.Random).ToArray();
|
---|
102 |
|
---|
103 | var bound = Context.Maximization ? Context.Population.Max(x => x.Fitness) : Context.Population.Min(x => x.Fitness);
|
---|
104 | var range = Math.Abs(bound - Context.LocalOptimaLevel);
|
---|
105 | if (range.IsAlmost(0)) range = Math.Abs(bound * 0.05);
|
---|
106 | if (range.IsAlmost(0)) { // because bound = localoptimalevel = 0
|
---|
107 | Context.IncrementEvaluatedSolutions(evaluations);
|
---|
108 | return;
|
---|
109 | }
|
---|
110 |
|
---|
111 | var temp = -range / Math.Log(1.0 / maxEvals);
|
---|
112 | var endtemp = -range / Math.Log(0.1 / maxEvals);
|
---|
113 | var annealFactor = Math.Pow(endtemp / temp, 1.0 / maxEvals);
|
---|
114 | for (var iter = 0; iter < int.MaxValue; iter++) {
|
---|
115 | var moved = false;
|
---|
116 |
|
---|
117 | for (var i = 0; i < subN; i++) {
|
---|
118 | var idx = order[i];
|
---|
119 | var before = currentScope.Fitness;
|
---|
120 | current[idx] = !current[idx];
|
---|
121 | Context.Evaluate(currentScope, token);
|
---|
122 | evaluations++;
|
---|
123 | var after = currentScope.Fitness;
|
---|
124 |
|
---|
125 | if (Context.IsBetter(after, before) && (bestOfTheWalk == null || Context.IsBetter(after, bestOfTheWalk.Fitness))) {
|
---|
126 | bestOfTheWalk = (SingleObjectiveSolutionScope<BinaryVector>)currentScope.Clone();
|
---|
127 | if (Context.IsBetter(bestOfTheWalk, scope)) {
|
---|
128 | moved = false;
|
---|
129 | break;
|
---|
130 | }
|
---|
131 | }
|
---|
132 | var diff = Context.Maximization ? after - before : before - after;
|
---|
133 | if (diff > 0) moved = true;
|
---|
134 | else {
|
---|
135 | var prob = Math.Exp(diff / temp);
|
---|
136 | if (Context.Random.NextDouble() >= prob) {
|
---|
137 | // the move is not good enough -> undo the move
|
---|
138 | current[idx] = !current[idx];
|
---|
139 | currentScope.Fitness = before;
|
---|
140 | }
|
---|
141 | }
|
---|
142 | temp *= annealFactor;
|
---|
143 | if (evaluations >= maxEvals) break;
|
---|
144 | }
|
---|
145 | if (!moved) break;
|
---|
146 | if (evaluations >= maxEvals) break;
|
---|
147 | }
|
---|
148 |
|
---|
149 | Context.IncrementEvaluatedSolutions(evaluations);
|
---|
150 | scope.Adopt(bestOfTheWalk ?? currentScope);
|
---|
151 | }
|
---|
152 |
|
---|
153 | protected override ISingleObjectiveSolutionScope<BinaryVector> Breed(ISingleObjectiveSolutionScope<BinaryVector> p1, ISingleObjectiveSolutionScope<BinaryVector> p2, CancellationToken token) {
|
---|
154 | var evaluations = 0;
|
---|
155 | var N = p1.Solution.Length;
|
---|
156 |
|
---|
157 | var probe = Context.ToScope((BinaryVector)p1.Solution.Clone());
|
---|
158 |
|
---|
159 | var cache = new HashSet<BinaryVector>(new BinaryVectorEqualityComparer());
|
---|
160 | cache.Add(p1.Solution);
|
---|
161 | cache.Add(p2.Solution);
|
---|
162 |
|
---|
163 | var cacheHits = new Dictionary<int, int>() { { 0, 0 }, { 1, 0 }, { 2, 0 } };
|
---|
164 | ISingleObjectiveSolutionScope<BinaryVector> offspring = null;
|
---|
165 |
|
---|
166 | while (evaluations < N) {
|
---|
167 | BinaryVector c = null;
|
---|
168 | var xochoice = cacheHits.SampleRandom(Context.Random).Key;
|
---|
169 | switch (xochoice) {
|
---|
170 | case 0: c = NPointCrossover.Apply(Context.Random, p1.Solution, p2.Solution, new IntValue(1)); break;
|
---|
171 | case 1: c = NPointCrossover.Apply(Context.Random, p1.Solution, p2.Solution, new IntValue(2)); break;
|
---|
172 | case 2: c = UniformCrossover.Apply(Context.Random, p1.Solution, p2.Solution); break;
|
---|
173 | }
|
---|
174 | if (cache.Contains(c)) {
|
---|
175 | cacheHits[xochoice]++;
|
---|
176 | if (cacheHits[xochoice] > 10) {
|
---|
177 | cacheHits.Remove(xochoice);
|
---|
178 | if (cacheHits.Count == 0) break;
|
---|
179 | }
|
---|
180 | continue;
|
---|
181 | }
|
---|
182 | probe.Solution = c;
|
---|
183 | Context.Evaluate(probe, token);
|
---|
184 | evaluations++;
|
---|
185 | cache.Add(c);
|
---|
186 | if (offspring == null || Context.IsBetter(probe, offspring)) {
|
---|
187 | offspring = probe;
|
---|
188 | if (Context.IsBetter(offspring, p1) && Context.IsBetter(offspring, p2))
|
---|
189 | break;
|
---|
190 | }
|
---|
191 | }
|
---|
192 | Context.IncrementEvaluatedSolutions(evaluations);
|
---|
193 | return offspring ?? probe;
|
---|
194 | }
|
---|
195 |
|
---|
196 | protected override ISingleObjectiveSolutionScope<BinaryVector> Link(ISingleObjectiveSolutionScope<BinaryVector> a, ISingleObjectiveSolutionScope<BinaryVector> b, CancellationToken token, bool delink = false) {
|
---|
197 | var evaluations = 0;
|
---|
198 | var childScope = (ISingleObjectiveSolutionScope<BinaryVector>)a.Clone();
|
---|
199 | var child = childScope.Solution;
|
---|
200 | ISingleObjectiveSolutionScope<BinaryVector> best = null;
|
---|
201 | var cF = a.Fitness;
|
---|
202 | var bF = double.NaN;
|
---|
203 | var order = Enumerable.Range(0, child.Length)
|
---|
204 | .Where(x => !delink && child[x] != b.Solution[x] || delink && child[x] == b.Solution[x])
|
---|
205 | .Shuffle(Context.Random).ToList();
|
---|
206 | if (order.Count == 0) return childScope;
|
---|
207 |
|
---|
208 | while (true) {
|
---|
209 | var bestS = double.NaN;
|
---|
210 | var bestI = -1;
|
---|
211 | for (var i = 0; i < order.Count; i++) {
|
---|
212 | var idx = order[i];
|
---|
213 | child[idx] = !child[idx]; // move
|
---|
214 | Context.Evaluate(childScope, token);
|
---|
215 | evaluations++;
|
---|
216 | var s = childScope.Fitness;
|
---|
217 | childScope.Fitness = cF;
|
---|
218 | child[idx] = !child[idx]; // undo move
|
---|
219 | if (Context.IsBetter(s, cF)) {
|
---|
220 | bestS = s;
|
---|
221 | bestI = i;
|
---|
222 | break; // first-improvement
|
---|
223 | }
|
---|
224 | if (Context.IsBetter(s, bestS)) {
|
---|
225 | // least-degrading
|
---|
226 | bestS = s;
|
---|
227 | bestI = i;
|
---|
228 | }
|
---|
229 | }
|
---|
230 | child[order[bestI]] = !child[order[bestI]];
|
---|
231 | order.RemoveAt(bestI);
|
---|
232 | cF = bestS;
|
---|
233 | childScope.Fitness = cF;
|
---|
234 | if (Context.IsBetter(cF, bF)) {
|
---|
235 | bF = cF;
|
---|
236 | best = (ISingleObjectiveSolutionScope<BinaryVector>)childScope.Clone();
|
---|
237 | }
|
---|
238 | if (order.Count == 0) break;
|
---|
239 | }
|
---|
240 | Context.IncrementEvaluatedSolutions(evaluations);
|
---|
241 | return best ?? childScope;
|
---|
242 | }
|
---|
243 | }
|
---|
244 | }
|
---|