1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Data;
|
---|
23 | using HeuristicLab.Tests;
|
---|
24 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Encodings.BinaryVectorEncoding.Tests {
|
---|
27 | /// <summary>
|
---|
28 | ///This is a test class for SinglePointCrossoverTest and is intended
|
---|
29 | ///to contain all SinglePointCrossoverTest Unit Tests
|
---|
30 | ///</summary>
|
---|
31 | [TestClass()]
|
---|
32 | public class NPointCrossoverTest {
|
---|
33 | /// <summary>
|
---|
34 | ///A test for Apply
|
---|
35 | ///</summary>
|
---|
36 | [TestMethod]
|
---|
37 | [TestCategory("Encodings.BinaryVector")]
|
---|
38 | [TestProperty("Time", "short")]
|
---|
39 | public void NPointCrossoverApplyTest() {
|
---|
40 | TestRandom random = new TestRandom();
|
---|
41 | BinaryVector parent1, parent2, expected, actual;
|
---|
42 | IntValue n;
|
---|
43 | bool exceptionFired;
|
---|
44 | // The following test is based on Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg, p. 48
|
---|
45 | random.Reset();
|
---|
46 | n = new IntValue(1);
|
---|
47 | random.IntNumbers = new int[] { 4 };
|
---|
48 | parent1 = new BinaryVector(new bool[] { false, false, false, false, true, false, false, false, false });
|
---|
49 | parent2 = new BinaryVector(new bool[] { true, true, false, true, false, false, false, false, true });
|
---|
50 | expected = new BinaryVector(new bool[] { false, false, false, false, false, false, false, false, true });
|
---|
51 | actual = NPointCrossover.Apply(random, parent1, parent2, n);
|
---|
52 | Assert.IsTrue(Auxiliary.BinaryVectorIsEqualByPosition(actual, expected));
|
---|
53 |
|
---|
54 | // The following test is based on Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg, p. 48
|
---|
55 | random.Reset();
|
---|
56 | n = new IntValue(2);
|
---|
57 | random.IntNumbers = new int[] { 4, 5 };
|
---|
58 | parent1 = new BinaryVector(new bool[] { false, false, false, false, true, false, false, false, false });
|
---|
59 | parent2 = new BinaryVector(new bool[] { true, true, false, true, false, false, false, false, true });
|
---|
60 | expected = new BinaryVector(new bool[] { false, false, false, false, false, false, false, false, false });
|
---|
61 | actual = NPointCrossover.Apply(random, parent1, parent2, n);
|
---|
62 | Assert.IsTrue(Auxiliary.BinaryVectorIsEqualByPosition(actual, expected));
|
---|
63 |
|
---|
64 | // The following test is based on Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg, p. 48
|
---|
65 | random.Reset();
|
---|
66 | n = new IntValue(2);
|
---|
67 | random.IntNumbers = new int[] { 4, 5 };
|
---|
68 | parent2 = new BinaryVector(new bool[] { false, false, false, false, true, false, false, false, false });
|
---|
69 | parent1 = new BinaryVector(new bool[] { true, true, false, true, false, false, false, false, true });
|
---|
70 | expected = new BinaryVector(new bool[] { true, true, false, true, true, false, false, false, true });
|
---|
71 | actual = NPointCrossover.Apply(random, parent1, parent2, n);
|
---|
72 | Assert.IsTrue(Auxiliary.BinaryVectorIsEqualByPosition(actual, expected));
|
---|
73 |
|
---|
74 | // The following test is not based on any published examples
|
---|
75 | random.Reset();
|
---|
76 | random.IntNumbers = new int[] { 2 };
|
---|
77 | parent1 = new BinaryVector(new bool[] { false, true, true, false, false }); // this parent is longer
|
---|
78 | parent2 = new BinaryVector(new bool[] { false, true, true, false });
|
---|
79 | exceptionFired = false;
|
---|
80 | try {
|
---|
81 | actual = NPointCrossover.Apply(random, parent1, parent2, n);
|
---|
82 | }
|
---|
83 | catch (System.ArgumentException) {
|
---|
84 | exceptionFired = true;
|
---|
85 | }
|
---|
86 | Assert.IsTrue(exceptionFired);
|
---|
87 | }
|
---|
88 | }
|
---|
89 | }
|
---|