Free cookie consent management tool by TermsFeed Policy Generator

source: branches/PausableBasicAlgorithm/HeuristicLab.Algorithms.ParameterlessPopulationPyramid/3.3/HillClimber.cs @ 13554

Last change on this file since 13554 was 13378, checked in by jkarder, 9 years ago

#2524: made BasicAlgorithm pausable

File size: 5.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 * and the BEACON Center for the Study of Evolution in Action.
5 *
6 * This file is part of HeuristicLab.
7 *
8 * HeuristicLab is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * HeuristicLab is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
20 */
21#endregion
22
23using System;
24using System.Collections.Generic;
25using System.Linq;
26using System.Threading;
27using HeuristicLab.Common;
28using HeuristicLab.Core;
29using HeuristicLab.Data;
30using HeuristicLab.Encodings.BinaryVectorEncoding;
31using HeuristicLab.Optimization;
32using HeuristicLab.Parameters;
33using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
34using HeuristicLab.Problems.Binary;
35using HeuristicLab.Random;
36
37
38namespace HeuristicLab.Algorithms.ParameterlessPopulationPyramid {
39  // This code is based off the publication
40  // B. W. Goldman and W. F. Punch, "Parameter-less Population Pyramid," GECCO, pp. 785–792, 2014
41  // and the original source code in C++11 available from: https://github.com/brianwgoldman/Parameter-less_Population_Pyramid
42  [Item("Hill Climber (HC)", "Binary Hill Climber.")]
43  [StorableClass]
44  [Creatable(CreatableAttribute.Categories.SingleSolutionAlgorithms, Priority = 150)]
45  public class HillClimber : BasicAlgorithm {
46    [Storable]
47    private IRandom random;
48
49    private const string IterationsParameterName = "Iterations";
50    private const string BestQualityResultName = "Best quality";
51    private const string IterationsResultName = "Iterations";
52
53    public override bool Pausable { get { return true; } }
54
55    public override Type ProblemType {
56      get { return typeof(BinaryProblem); }
57    }
58    public new BinaryProblem Problem {
59      get { return (BinaryProblem)base.Problem; }
60      set { base.Problem = value; }
61    }
62
63    public IFixedValueParameter<IntValue> IterationsParameter {
64      get { return (IFixedValueParameter<IntValue>)Parameters[IterationsParameterName]; }
65    }
66
67    public int Iterations {
68      get { return IterationsParameter.Value.Value; }
69      set { IterationsParameter.Value.Value = value; }
70    }
71
72    #region ResultsProperties
73    private double ResultsBestQuality {
74      get { return ((DoubleValue)Results[BestQualityResultName].Value).Value; }
75      set { ((DoubleValue)Results[BestQualityResultName].Value).Value = value; }
76    }
77    private int ResultsIterations {
78      get { return ((IntValue)Results[IterationsResultName].Value).Value; }
79      set { ((IntValue)Results[IterationsResultName].Value).Value = value; }
80    }
81    #endregion
82
83    [StorableConstructor]
84    protected HillClimber(bool deserializing) : base(deserializing) { }
85    protected HillClimber(HillClimber original, Cloner cloner)
86      : base(original, cloner) {
87    }
88    public override IDeepCloneable Clone(Cloner cloner) {
89      return new HillClimber(this, cloner);
90    }
91
92    public HillClimber()
93      : base() {
94      random = new MersenneTwister();
95      Parameters.Add(new FixedValueParameter<IntValue>(IterationsParameterName, "", new IntValue(100)));
96    }
97    protected override void Initialize(CancellationToken cancellationToken) {
98      Results.Add(new Result(BestQualityResultName, new DoubleValue(double.NaN)));
99      Results.Add(new Result(IterationsResultName, new IntValue(0)));
100      base.Initialize(cancellationToken);
101    }
102    protected override void Run(CancellationToken cancellationToken) {
103      while (ResultsIterations < Iterations) {
104        cancellationToken.ThrowIfCancellationRequested();
105
106        var solution = new BinaryVector(Problem.Length);
107        for (int i = 0; i < solution.Length; i++) {
108          solution[i] = random.Next(2) == 1;
109        }
110
111        var fitness = Problem.Evaluate(solution, random);
112
113        fitness = ImproveToLocalOptimum(Problem, solution, fitness, random);
114        if (double.IsNaN(ResultsBestQuality) || Problem.IsBetter(fitness, ResultsBestQuality)) {
115          ResultsBestQuality = fitness;
116        }
117
118        ResultsIterations++;
119      }
120    }
121    // In the GECCO paper, Section 2.1
122    public static double ImproveToLocalOptimum(BinaryProblem problem, BinaryVector solution, double fitness, IRandom rand) {
123      var tried = new HashSet<int>();
124      do {
125        var options = Enumerable.Range(0, solution.Length).Shuffle(rand);
126        foreach (var option in options) {
127          if (tried.Contains(option)) continue;
128          solution[option] = !solution[option];
129          double newFitness = problem.Evaluate(solution, rand);
130          if (problem.IsBetter(newFitness, fitness)) {
131            fitness = newFitness;
132            tried.Clear();
133          } else {
134            solution[option] = !solution[option];
135          }
136          tried.Add(option);
137        }
138      } while (tried.Count != solution.Length);
139      return fitness;
140    }
141  }
142}
Note: See TracBrowser for help on using the repository browser.